
Introduction to Fuzzing and 
Exploitation

Daniel Zhang



Exploits
● Leveraging a vulnerability in an application or system in order to gain 

unauthorized access

○ Information leak

○ Denial of service

○ Privilege escalation

○ Shell access

● How are unknown vulnerabilities found?

● How are exploits written?



● Fuzzing - Software testing method where large amounts of malformed data are 

supplied to a program with the purpose of forcing unexpected behavior

Finding Hidden Vulnerabilities



What Can be Fuzzed?
● Anything that takes some form of input can be fuzzed

○ Web applications

○ System calls

○ Databases

○ Mouse events



In Favour of Fuzzing
● No source code required

○ Ideal for black box testing

● Semi-automated

○ Most effective against large programs with many input vectors

● Evaluate robustness beyond static analysis



Noteworthy Behavior
● Crashing

● Hanging

● Non-crashing memory corruption

● Failed code assertions

● Error routines



Fields of Interest
● Numbers

○ Integer overflows and underflows

● Strings

○ Buffer overflows

○ Format string errors

● Delimiters

○ Improper protocol parsing

○ Command injection



Types of Input
● Completely random data; arbitrary length and content

● Strings

○ Very long strings

○ Escaped characters

○ Format tokens

● Integers

○ Zero

○ Very large numbers

○ Negative numbers

● Delimiters

○ Command terminators



● Corrupt data without awareness of internal program structure

● Little analysis or protocol knowledge required

● Difficult to pinpoint the cause of errors

● Despite limitations, has history of success

Dumb Fuzzing



Dumb Fuzzing 2
● Mutation Fuzzing

○ Requires a starting valid data frame

○ Iteratively replace portions of data with abnormal content

○ Moderate effectiveness at code path coverage



Smart Fuzzing
● Requires awareness of internal protocols and relations

● Preliminary analysis may require significant time investment

● Maximum code path coverage



Smart Fuzzing 2
● Generation Fuzzing

○ Does not require valid starting data frame

○ Generate static inputs and mutations based on analyst description of a protocol

○ Construct a grammar describing internal structure



Memory Corruption and Exploitation
● Fuzzed behavior can signal existence of treacherous memory bugs

● These can be leveraged to inject and execute arbitrary code, disable security 

mechanisms, escalate privileges, add an account, etc.

● Main focus on x86 architecture, stack overflow



Memory Layout of a Process
stack ↓ tracks procedure calls 

and routines; holds 
temporary local 

variables

highest addresses

heap ↑ dynamically allocated 
memory

bss uninitialized global 
and static local 

variables

data initialized global and 
static local variables

text read-only executable 
code

lowest addresses



Review: CPU Registers
● General purpose registers:

○ EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP

● ESP

○ Stack pointer

○ Points to the top of the stack

● EBP

○ Base pointer

○ Base of current stack frame

● EIP

○ Instruction Pointer

○ Points to next instruction to be executed



● Default execution of a program is 

sequential in memory

○ Program counter (EIP) increments after 

executing an instruction

● Some instructions may jump program 

execution

○ Conditional jumps: if-then-else construct

○ Unconditional jumps: break, continue, goto 

statements; calling or returning into a 

function

Review: Program Flow



Review: Stack
[bottom of stack]

previous frames

current frame ← ebp

← esp

[top of stack]

stack
↓

[highest 
address]

[lowest 
address]



Review: Stack
function arg2

function arg1

return 
address

previous ebp ← ebp

local var1

local var2 ← esp

[bottom of stack]

previous frames

current frame ← ebp

← esp

[top of stack]



Review: Stack Frames, Calling Conventions

name = “Alice”

return address ← eip on return

previous base 
pointer

← ebp

greeting = 
“Hello, Alice”

← esp



Buffer Overflow

name = 
“AAA[..]AAAA”

return address
АААА

← eip on return

previous ebp
АААА

← ebp

greeting = 
AAAAAAAAAA

← esp



Shellcode
● Control of EIP can be weaponized by directing the program flow to execute 

arbitrary code in memory

● Shellcode is a classic payload; spawns a shell for the attacker

● Written in Assembly

○ Assembled into machine code

○ Specific to processor type



Shellcode

● Useful to know how to write and modify,

● Quicker to fetch through metasploit or shell-storm

● http://shell-storm.org/shellcode/

http://shell-storm.org/shellcode/


NOPs
● NOP = No operation, move to next instruction

● Exploit will write a contiguous section of NOPs before the start of the shellcode

● Jumps that land in NOP sled advance to first piece of executable code

● Difficult to pinpoint exact location of shellcode; NOPs allow larger landing zone



● Exact number of bytes between the start of the buffer and the return address on 

the stack

● Metasploit pattern_create and pattern_offset tools help to determine offset for EIP 

control

Return Address: Offset



● Provide NOP sled to program in debugger; inspect stack

Return Address: Value



Summary of Basic Buffer Overflow Exploit
● Control EIP

● Identify landing area on return

● Craft payload

● Final exploit:

○ [NOP sled][shellcode][padding][return address pointing to sled]



Defense Mechanisms
● Non Executable Stack - NX, DEP, W^X

● Address Space Layout Randomization - ASLR



Non Executable Stack
● Modern CPUs restrict execution of the stack and heap by default

● Began adoption early as mid-90s

● Significantly reduced traditional buffer overflow attacks

● Previous exploit will fail if program is compiled with NX (default setting)



return-to-libc
● Can still leverage buffer overflow in case of NX protections or small buffer size

● Developers often call C standard library functions (libc)

○ printf, strcat, strcpy, system, etc.

○ libc is linked to the binary at runtime

● Redirect program flow to call libc functions with traditional EIP overwrite



● int system(const char *command);

● Executes argument as shell command

● Call system with pointer to “/bin/sh” to spawn shell

System()



Ret2libc Exploit Format
● [padding][EIP overwrite to system()][system() return][pointer to “/bin/sh”]

● Padding is arbitrary here; no shellcode or NOPs needed

● system() return address can be junk, but preferably something that allows for 

graceful exit()

● Overwrite EIP to location of system()

○ Find system() in GDB at runtime

● Where might “/bin/sh” exist?



Ret2libc Exploit Format 2
● Environment variables are located in every program run from the shell

○ Set an environment variable containing your argument to system()

● Find address of your environment variable in gdb

● Use 0xbffff222+8 to discard “EXPLOIT=” portion

● Exploit returns shell without requiring stack execution



Address Space Layout Randomization
● Addresses randomized for memory locations like stack and heap

● Began adoption in 2000s

● Shellcode stack location unknown

● ret2libc system() function location unknown

● Does not fix the buffer overflow vulnerability



Bypassing ASLR
● Brute force

○ Repeatedly send payloads with huge NOP sleds

○ Can even brute force ret2libc if ASLR entropy is poor enough

○ Slow, loud

● Information leak

○ Force process to leak contents of stack arguments

○ Glean enough information from a running process to craft exploit for that instance



● Format strings contain text and format specifiers

○ printf() in C; many other languages have format string functions

● printf(“Hello, %s%s”, “Santa”, “Claus”)

○ printf() call expects format string at ret + 4

○ “Santa” pointer at ret + 8

○ “Claus” pointer at ret + 12

● What if an attacker has control of printf() buffer?

Format Strings



Leaking Stack Information
● Recall hello()

○ printf(greeting) allows for unsanitized user input

● Force printf() to read from the stack by passing in format strings

○ %x denotes a hexadecimal representation



Leaking Stack Information 2
● Output stack values at the time of the printf() call

● By leaking information off the stack, attackers can craft an exploit to target the 

specific instance of a process being executed



Summary
● Memory exploitation has highly destructive possibilities

● Traditional buffer overflow is all but defunct with modern mitigations

● However, premise is the same

○ Identify memory vulnerability

○ Gain control of program flow

○ Inject code or identify existing code in memory to utilize as payload

○ Execute payload

○ Acquire increased access to target



● Simple buffer overflow content

○ Binary Exploitation by jgor (UT ISO)

Slide Attributions


