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Goals

e Introduce basics of machine learning (ML) for cybersecurity
e Introduce a few useful open-source ML tools



Outline

e What is supervised machine learning?

e Motivating example: detecting malicious commands (e.g., Bash, PowerShell)
o  Problem definition
o How to detect using heuristics
o How to detect using machine learning

e Potential pitfalls when using supervised machine learning
e Other forms of machine learning and data science for cybersecurity



Supervised machine learning: classification

e C(Class of algorithms that automatically learns a method to distinguish datapoints
into pre-defined categories
e Widely used for many problems

e [or cybersecurity, use cases include differentiating:
o Malware from normal files
o Malicious SQL queries from normal SQL queries
o Types of traffic
o Many others



Supervised machine learning pipeline

e A typical supervised ML pipeline can be (roughly) divided into four stages:
o Data collection and labeling
o  Feature extraction
o ML model training
o Inference

e Note: This is not the only way to conceptually divide up a supervised ML
pipeline!
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Supervised ML pipeline: data collection and labeling

e Data collection and labeling stage

o Collect the raw data that will be used in later stages
o Creates labels
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Supervised ML pipeline: feature extraction

Feature extraction stage

o  Converts raw data into a format that the ML model can understand
o Often, goal is essentially to create a large table of numerical values
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Supervised ML pipeline: ML model training

e ML model training stage
o Uses labeled data from previous stage to create a ML model
o ML model is capable of predicting labels for unlabeled datapoints
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Supervised ML pipeline: inference

e Inference stage
o This stage uses the model to predict labels for unlabeled datapoints
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Malicious Bash/Powershell commands

e Once in a system, these tools are natively available
e Attackers can use them for many parts of the attack lifecycle
e This is an example of “living off the land”



Heuristics for detecting malicious Bash/PowerShell

e A very simple solution is to create a list of static signatures
e Example: If any commands match ‘cat /etc/passwd’, raise an alert
o Thatis, use exact string matches

e Useful but incomplete security solution

o Will not catch anything that does not match exactly
o Adversaries will purposely try to avoid commands that match signatures



Obfuscated Bash/PowerShell

e To avoid signatures, attackers can purposely obfuscate their commands

e Scripts exist to automatically obfuscate Bash/Powershell commands
o  Bashfuscator: https://github.com/Bashfuscator/Bashfuscator
o Powershell Invoke-Obfuscation: https:/github.com/danielbohannon/Invoke-Obfuscation



https://github.com/Bashfuscator/Bashfuscator
https://github.com/danielbohannon/Invoke-Obfuscation

Obfuscated command detection

e Pretty easy for humans to differentiate between obfuscated and

non-obfuscated commands
e Can we build a detector that can do this automatically for us?

e Why use this as a motivating example

Easy to tell difference as a human

Easy to determine what the detectors are doing

General techniques towards building a detector are widely applicable

Will learn all building blocks of a detector that could be deployed in the real world

O O O O



Baseline detector: manually-encoded decision tree

e |et’s manually create some baseline detectors for obfuscated bash

e Rough characteristics of obfuscated bash compared to unobfuscated bash:
o0 Much more punctuation
o Tends to be longer
o Unusual sequences of characters
o  Certain methods of obfuscation tend to always insert the same words

e We can try to encode our domain knowledge as a tree of if-then rules



Machine learning version of baseline decision tree

e Major problems with manually creating a decision tree:
o What criteria do we use at each tree node?
o What order should we place the nodes?
o At what value should we make each split?
o How many nodes should be in the tree?

e Machine learning versions of decision trees exist that automatically make
these decisions based on available data



Random forests

e Instead of creating a single tree, we can create many trees (a forest of trees)
and take a majority vote

e o create a diverse set of trees, each tree in the forest is created using a
random subset of the data

e This is the intuition behind “random forests”

e This model works well in practice and is a useful baseline approach



Supervised ML pipeline for obfuscated bash
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Another baseline detector: a linear model

e Rough characteristics of obfuscated bash compared to unobfuscated bash:
o Much more punctuation
o Tends to be longer
o Unusual sequences of characters
o Certain methods of obfuscation tend to always insert the same words

e Let’s build another detector that looks for unusual sequences of characters
e This model will basically accumulate evidence that the command is obfuscated
or not



Another baseline detector: mathematically expressed
version

e We can pose this new baseline in a number of mathematical formats



Data-driven version of baseline detector

e By automatically learning the weights in the various mathematical formulations
of our baseline, we essentially have a linear machine learning model

e This is another useful class of supervised classification models
o One particularly useful linear model is logistic regression



Supervised learning for system call data

e Small modifications to previous pipeline allow us to handle automated
detection of malicious system call sequences

e Roughly, all we really need to change are:

o Data collection
o Feature extraction

e The flexibility of ML approaches for many different types of problems is one of
the most powerful aspects of ML



Supervised ML pipeline for system call traces
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Goal: Classify system call sequence as normal versus malicious

Data collection and labeling
o  Collection of system call traces

Feature extraction

o  System call sequences

ML model training

o Random forests or logistic regression

Inference

o Automated prediction of new, unlabeled system call traces
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Supervised learning for system call data

e Simple feature extraction
o Ignore system call parameters
o Use sliding window of n system calls (an n-gram of system calls)
o Datapoint is a normalized histogram of system call n-grams

e [eatures can then be used to learn a model (e.g., via logistic regression)
e Simple but straightforward baseline



Supervised classification for cybersecurity

e Method to automatically place datapoints into classes (i.e., categories)

e Possible cybersecurity use cases:

o Normal vs. malicious

o Different types of normal behavior
e Pros:

o Powerful set of techniques

o  Potentially useful for a variety of use cases
e Cons:

o Requires labeled data (potentially a lot of it)
o Human interpretation not always straightforward



Issues with supervised ML for cybersecurity

e F[or supervised learning to work, typically assume:
o We have (lots of) labeled data
o Training data reflects data during inference

e Cybersecurity tends to break both of these assumptions



Issues with supervised ML for cybersecurity:
dataset issues

e Data is unavailable
o Labeling data is (very) time consuming/difficult
o Data cannot be shared (e.g., due to data privacy)
o Attacks tend to be rare events, so hard to get lots of examples



Issues with supervised ML for cybersecurity:
dataset issues

e Data is not reflective of real world
o Ratio of normal/malicious data is not reflective of real life
o Data is artificially generated and contains generation artifacts
o Normal and malicious data come from different sources and contain source artifacts



Issues with supervised ML for cybersecurity:
concept drift

e Training data typically does not fully reflect data during inference because:
o Adversaries will purposely evade existing detectors
o New attacks will occur during inference that do not occur during training
o  Frequency of certain types of attacks changes over time

e Unfortunate reality:
o  Often very difficult to gauge robustness of a machine learning classifier
o Machine learning classifiers must be periodically re-trained, otherwise performance drops over
time
m How to automatically detect when they should be re-trained is an open issue
m Different groups have different ways of doing this



Interaction between evaluation metrics and ratio of
normal to malicious data

e When testing ML on cybersecurity, need to make sure the evaluation metric
and the ratio of normal to malicious data matches reality

e Unless careful, very bad detectors can appear to do well
o Consider a classifier that marks everything as normal

e In the following slides, we will look at this effect on some example metrics



Example evaluation metric: TP, TN, FP, FN

e |n binary classification problems, convention is to call the two classes the
“positive class” and “negative class”

e There are four types of predictions:
o  True Positive (TP). Correctly predicting the positive class
o  True Negative (TN). Correctly predicting the negative class
o False Negative (FN). Incorrectly predicting a positive class member to be in the negative class
o  False Positive (FP): Incorrectly predicting a negative class member to be in the positive class



Example evaluation metric: accuracy

TP+ TN
TP+TN+ FP + FN

e Accuracy =

e Measures what percentage of the predictions are correct



Example evaluation metric: FPR, FNR

FP
e FPR-=
TN + FP
FN
e FNR=
TP+ FN

e Measures false positive rate (FPR) and false negative rate (FNR)




Example evaluation metric: precision, recall, Fl-score

TP
e Precision =
TP + FP
TP
e Recall (i.e., sensitivity) =
TP+ FN

e F[l-measure is the harmonic mean of precision and recall
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Effect of relative and absolute class balance on
evaluation metrics

e Ratio of number of normal and malicious values can affect metric values
e Absolute number of normal and malicious values can affect metric values



Other machine learning paradigms

e Reinforcement learning

e Unsupervised learning

o  Clustering
o Anomaly detection



Unsupervised learning: clustering

e Method to group similar datapoints together in a dataset



Clustering for cybersecurity

e Method to group similar datapoints together in a dataset

e Choice of clustering algorithm and parameters dictates what is considered
similar

e Possible cybersecurity use cases:

o  Grouping together different types of behavior
o  Grouping together different types of users

e Pros:
o Does not require labels
o Potentially useful for a variety of use cases
e Cons:
o  Clusters may or may not correspond to groupings considered useful by humans



Unsupervised learning: anomaly detection

e Method to find the most unusual datapoints in a dataset



Anomaly detection for cybersecurity

e Method to find the most unusual datapoints in a dataset

e Assumptions when applied to cybersecurity:

o Assumes malicious events are rare

o Assumes malicious events are unusual

o Choice of anomaly detector dictates what is considered unusual
e Pros:

o Does not require labels

o Can potentially catch new types of malicious behavior
e Cons:

o Assumptions might not be true in practice

o False positive rate often very high in practice

o Is not typically designed to improve over time



|Isolation forests

e An anomaly detector that often performs well in practice
e Works by repeatedly and randomly partitioning the feature space

e Number of partitions needed to ‘isolate’ a data point indicates how unusual the
data point is



Other forms of data-driven analysis

e Simple statistics are often sufficient for cybersecurity
e For example, simply looking at min/max values, commonly occuring values,
etc., are often useful



Summary

e Machine learning is a useful tool for many problem domains including
cybersecurity

e Machine learning is not a silver bullet solution for cybersecurity

o Simple solutions are often sufficient in practice
o Need to be careful with how algorithms are trained and deployed

e These slides barely scratch the surface in terms of what machine learning can
and cannot do, as well as robust methods of creating/deploying machine
learning in practice



