Machine Learning for
Enterprise Cybersecurity

Fall 2019

Goals

e Introduce basics of machine learning (ML) for cybersecurity
e Introduce a few useful open-source ML tools

Outline

e What is supervised machine learning?

e Motivating example: detecting malicious commands (e.g., Bash, PowerShell)
o Problem definition
o How to detect using heuristics
o How to detect using machine learning

e Potential pitfalls when using supervised machine learning
e Other forms of machine learning and data science for cybersecurity

Supervised machine learning: classification

e C(Class of algorithms that automatically learns a method to distinguish datapoints
into pre-defined categories
e Widely used for many problems

e [or cybersecurity, use cases include differentiating:
o Malware from normal files
o Malicious SQL queries from normal SQL queries
o Types of traffic
o Many others

Supervised machine learning pipeline

e A typical supervised ML pipeline can be (roughly) divided into four stages:
o Data collection and labeling
o Feature extraction
o ML model training
o Inference

e Note: This is not the only way to conceptually divide up a supervised ML
pipeline!

Supervised machine learning pipeline

Processed
data with no
labels
Multiple
(ravl\J, cgzta) Raw data Processed .
feed with data with ML Predicted
eeds Data Model labels
; labels Feature labels ML Model
— Collection — — Extraction — Training — |nference — fe—
and Labeling

Supervised ML pipeline: data collection and labeling

e Data collection and labeling stage

o Collect the raw data that will be used in later stages
o Creates labels

(Multiple)
raw data RCT'W data
feeds Data }N'th
abels
-3 Collection
and Labeling

Supervised ML pipeline: feature extraction

Feature extraction stage

o Converts raw data into a format that the ML model can understand
o Often, goal is essentially to create a large table of numerical values

Data
Collection
and Labeling

Raw data
with
labels

Feature
Extraction

Processed

data with
labels

ML Model
Training

—

Inference

Supervised ML pipeline: ML model training

e ML model training stage
o Uses labeled data from previous stage to create a ML model
o ML model is capable of predicting labels for unlabeled datapoints

Data

-3 Collection
and Labeling

Feature
Extraction

Processed
data with de |
ode
labels ML Model N
Training

Inference

Supervised ML pipeline: inference

e Inference stage
o This stage uses the model to predict labels for unlabeled datapoints

)) Processed
o Note: Data processing for unlabeled data might share the same or data with no
similar data collection and feature extraction stages labels
ML Predicted
Data Model labels
. Feature ML Model
Collection Extraction Training — |nference |—
and Labeling

Malicious Bash/Powershell commands

e Once in a system, these tools are natively available
e Attackers can use them for many parts of the attack lifecycle
e This is an example of “living off the land”

Heuristics for detecting malicious Bash/PowerShell

e A very simple solution is to create a list of static signatures
e Example: If any commands match ‘cat /etc/passwd’, raise an alert
o Thatis, use exact string matches

e Useful but incomplete security solution

o Will not catch anything that does not match exactly
o Adversaries will purposely try to avoid commands that match signatures

Obfuscated Bash/PowerShell

e To avoid signatures, attackers can purposely obfuscate their commands

e Scripts exist to automatically obfuscate Bash/Powershell commands
o Bashfuscator: https://github.com/Bashfuscator/Bashfuscator
o Powershell Invoke-Obfuscation: https:/github.com/danielbohannon/Invoke-Obfuscation

https://github.com/Bashfuscator/Bashfuscator
https://github.com/danielbohannon/Invoke-Obfuscation

Obfuscated command detection

e Pretty easy for humans to differentiate between obfuscated and

non-obfuscated commands
e Can we build a detector that can do this automatically for us?

e Why use this as a motivating example

Easy to tell difference as a human

Easy to determine what the detectors are doing

General techniques towards building a detector are widely applicable

Will learn all building blocks of a detector that could be deployed in the real world

O O O O

Baseline detector: manually-encoded decision tree

e |et’s manually create some baseline detectors for obfuscated bash

e Rough characteristics of obfuscated bash compared to unobfuscated bash:
o0 Much more punctuation
o Tends to be longer
o Unusual sequences of characters
o Certain methods of obfuscation tend to always insert the same words

e We can try to encode our domain knowledge as a tree of if-then rules

Machine learning version of baseline decision tree

e Major problems with manually creating a decision tree:
o What criteria do we use at each tree node?
o What order should we place the nodes?
o At what value should we make each split?
o How many nodes should be in the tree?

e Machine learning versions of decision trees exist that automatically make
these decisions based on available data

Random forests

e Instead of creating a single tree, we can create many trees (a forest of trees)
and take a majority vote

e o create a diverse set of trees, each tree in the forest is created using a
random subset of the data

e This is the intuition behind “random forests”

e This model works well in practice and is a useful baseline approach

Supervised ML pipeline for obfuscated bash

(Multiple)
raw data

Goal: Classify obfuscated versus unobfuscated bash commands
Data collection and labeling
o Collection of unobfuscated bash; corresponding output from bashfuscator

Feature extraction
o Unusual characters, command length, character sequences

ML model training
o Random forests (or logistic regresssion)

Inference

o Automated prediction of new, unlabeled bash commands

feeds

—_—

Data
Collection
and Labeling

Raw data
with
labels

Feature
Extraction

Processed

ML

data with
labels

ML Model
Training

Processed
data with no
labels

Predicted

Model
a

Inference

labels

—

Another baseline detector: a linear model

e Rough characteristics of obfuscated bash compared to unobfuscated bash:
o Much more punctuation
o Tends to be longer
o Unusual sequences of characters
o Certain methods of obfuscation tend to always insert the same words

e Let’s build another detector that looks for unusual sequences of characters
e This model will basically accumulate evidence that the command is obfuscated
or not

Another baseline detector: mathematically expressed
version

e We can pose this new baseline in a number of mathematical formats

Data-driven version of baseline detector

e By automatically learning the weights in the various mathematical formulations
of our baseline, we essentially have a linear machine learning model

e This is another useful class of supervised classification models
o One particularly useful linear model is logistic regression

Supervised learning for system call data

e Small modifications to previous pipeline allow us to handle automated
detection of malicious system call sequences

e Roughly, all we really need to change are:

o Data collection
o Feature extraction

e The flexibility of ML approaches for many different types of problems is one of
the most powerful aspects of ML

Supervised ML pipeline for system call traces

(Multiple)
raw data

Goal: Classify system call sequence as normal versus malicious

Data collection and labeling
o Collection of system call traces

Feature extraction

o System call sequences

ML model training

o Random forests or logistic regression

Inference

o Automated prediction of new, unlabeled system call traces

feeds

—_—

Data
Collection
and Labeling

Raw data
with
labels

Feature
Extraction

Processed

ML

data with
labels

ML Model
Training

Processed
data with no
labels

Predicted

Model
q

Inference

labels

—

Supervised learning for system call data

e Simple feature extraction
o Ignore system call parameters
o Use sliding window of n system calls (an n-gram of system calls)
o Datapoint is a normalized histogram of system call n-grams

e [eatures can then be used to learn a model (e.g., via logistic regression)
e Simple but straightforward baseline

Supervised classification for cybersecurity

e Method to automatically place datapoints into classes (i.e., categories)

e Possible cybersecurity use cases:

o Normal vs. malicious

o Different types of normal behavior
e Pros:

o Powerful set of techniques

o Potentially useful for a variety of use cases
e Cons:

o Requires labeled data (potentially a lot of it)
o Human interpretation not always straightforward

Issues with supervised ML for cybersecurity

e F[or supervised learning to work, typically assume:
o We have (lots of) labeled data
o Training data reflects data during inference

e Cybersecurity tends to break both of these assumptions

Issues with supervised ML for cybersecurity:
dataset issues

e Data is unavailable
o Labeling data is (very) time consuming/difficult
o Data cannot be shared (e.g., due to data privacy)
o Attacks tend to be rare events, so hard to get lots of examples

Issues with supervised ML for cybersecurity:
dataset issues

e Data is not reflective of real world
o Ratio of normal/malicious data is not reflective of real life
o Data is artificially generated and contains generation artifacts
o Normal and malicious data come from different sources and contain source artifacts

Issues with supervised ML for cybersecurity:
concept drift

e Training data typically does not fully reflect data during inference because:
o Adversaries will purposely evade existing detectors
o New attacks will occur during inference that do not occur during training
o Frequency of certain types of attacks changes over time

e Unfortunate reality:
o Often very difficult to gauge robustness of a machine learning classifier
o Machine learning classifiers must be periodically re-trained, otherwise performance drops over
time
m How to automatically detect when they should be re-trained is an open issue
m Different groups have different ways of doing this

Interaction between evaluation metrics and ratio of
normal to malicious data

e When testing ML on cybersecurity, need to make sure the evaluation metric
and the ratio of normal to malicious data matches reality

e Unless careful, very bad detectors can appear to do well
o Consider a classifier that marks everything as normal

e In the following slides, we will look at this effect on some example metrics

Example evaluation metric: TP, TN, FP, FN

e |n binary classification problems, convention is to call the two classes the
“positive class” and “negative class”

e There are four types of predictions:
o True Positive (TP). Correctly predicting the positive class
o True Negative (TN). Correctly predicting the negative class
o False Negative (FN). Incorrectly predicting a positive class member to be in the negative class
o False Positive (FP): Incorrectly predicting a negative class member to be in the positive class

Example evaluation metric: accuracy

TP+ TN
TP+TN+ FP + FN

e Accuracy =

e Measures what percentage of the predictions are correct

Example evaluation metric: FPR, FNR

FP
e FPR-=
TN + FP
FN
e FNR=
TP+ FN

e Measures false positive rate (FPR) and false negative rate (FNR)

Example evaluation metric: precision, recall, Fl-score

TP
e Precision =
TP + FP
TP
e Recall (i.e., sensitivity) =
TP+ FN

e F[l-measure is the harmonic mean of precision and recall

Confusion matrix

Actual Class .<

Predicted Class
= -
Positive Negative
. . False Negative (FN) gendlviily
Positive True Positive (TP) " 0E TP
ype I'rox m
. False Positive (FP) " Specificity
Negative ice True Negative (TN) TN
ype rror m
. Negative Predictive Accuracy
Precision
T Value TP+ TN
i TN (TP + TN + FP + FN)
(TP + FP) e
(TN + FN)

Effect of relative and absolute class balance on
evaluation metrics

e Ratio of number of normal and malicious values can affect metric values
e Absolute number of normal and malicious values can affect metric values

Other machine learning paradigms

e Reinforcement learning

e Unsupervised learning

o Clustering
o Anomaly detection

Unsupervised learning: clustering

e Method to group similar datapoints together in a dataset

Clustering for cybersecurity

e Method to group similar datapoints together in a dataset

e Choice of clustering algorithm and parameters dictates what is considered
similar

e Possible cybersecurity use cases:

o Grouping together different types of behavior
o Grouping together different types of users

e Pros:
o Does not require labels
o Potentially useful for a variety of use cases
e Cons:
o Clusters may or may not correspond to groupings considered useful by humans

Unsupervised learning: anomaly detection

e Method to find the most unusual datapoints in a dataset

Anomaly detection for cybersecurity

e Method to find the most unusual datapoints in a dataset

e Assumptions when applied to cybersecurity:

o Assumes malicious events are rare

o Assumes malicious events are unusual

o Choice of anomaly detector dictates what is considered unusual
e Pros:

o Does not require labels

o Can potentially catch new types of malicious behavior
e Cons:

o Assumptions might not be true in practice

o False positive rate often very high in practice

o Is not typically designed to improve over time

|Isolation forests

e An anomaly detector that often performs well in practice
e Works by repeatedly and randomly partitioning the feature space

e Number of partitions needed to ‘isolate’ a data point indicates how unusual the
data point is

Other forms of data-driven analysis

e Simple statistics are often sufficient for cybersecurity
e For example, simply looking at min/max values, commonly occuring values,
etc., are often useful

Summary

e Machine learning is a useful tool for many problem domains including
cybersecurity

e Machine learning is not a silver bullet solution for cybersecurity

o Simple solutions are often sufficient in practice
o Need to be careful with how algorithms are trained and deployed

e These slides barely scratch the surface in terms of what machine learning can
and cannot do, as well as robust methods of creating/deploying machine
learning in practice

