
Capabilities and DIFT

Tony Espinoza

am.espinoza@utexas.edu



Security mechanisms

I Talk about two security concepts.
1. Capabilities.

I Preempt with introduction of principle of least privilege.
2. Information Flow Tracking.

I Project questions.



Least privilege

The principle of least privilege states that a subject should be given
only those privileges that it needs in order to complete its task.1

I Real world(ish) examples:
I Valet key.
I Amazon trunk delivery.

1Introduction to Computer Security, Matt Bishop



Least privilege

I Guest speaker mentioned least privilege, what did he have to
say?

I How can we follow least privilege in containers?
I Don’t run as root.
I Limit system calls allowed.
I Secrets a container has access to.



Capabilities

I A way to enforce least privilege.
I An access control mechanism.
I What other access control mechanisms have we discussed?

I Mandatory access control.
I Discretionary access control.

I Capabilities are similar to Access Control Lists (ACL).
I Given an object, give the list of subjects and rights for each

subject.
I acl(file a) = { (proce, executess 1, { read, write}), (process 2, {

append, execute }) }
I getfacl Linux command line tool for ACL.



Capabilities

Each subject (e.g. process ) has associated with it a set of pairs,
with each pair containing an object (e.g. file) and a set of rights
(e.g. read, write).



Capabilities

Capability list c is a set of pairs of objects (o) and rights (r):
c = {o, r : o ∈ O, r ⊆ R}

cap() is a function that returns a capability list associated with
subject s.



Capabilities example

cap(process 1)

= { (file 1, { read, write, own }), (file 2, { read }),
(process 1, {read, write, execute, own}), (process 2, { write }) }



Capabilities example

cap(process 1) = { (file 1, { read, write, own }), (file 2, { read }),
(process 1, {read, write, execute, own}), (process 2, { write }) }



Capabilities example

I File descriptor in Linux is a capability.
I The capability is tightly bound to the file object.
I If the file is deleted and a new file with the same name is

created, the file descriptor still refers to the previous file.



Security of Capabilities

I Security is assured by three properties:
I Capabilities are unforgeable and tamper proof.
I Processes are able to obtain capabilities only by using the

authorized interfaces.
I Capabilities are only given to processes that are authorized to

hold them.



Capabilities vs Access Control Lists

I Answer two questions:
1. Given a subject, what objects can it access, and how?
2. Given an object, what subjects can access it, and how?

I Which does each answer easily?
I First question capabilities answers easily
I Second question ACL answers easily



EROS: a fast capability system

I EROS is a system built to run on the Pentium processor.
I Capabilities are the only mechanism for naming and using

resources.
I Used a microkernel architecture.

I Microkernel is the opposite of a monolithic kernel like Linux.
I Every OS in use is pretty much a monolithic kernel.
I Kernel is in charge of as little as possible.

I e.g. low-level address space management, thread management,
and inter-process communication (IPC)

I Development stopped in 2005.



EROS

I Leverages microkernel architecture.
I Microkernel architecture has many subsystems that are in

charge of different areas:
I e.g. device drivers, protocol stacks and file systems.

I EROS uses protected domains:
I A set of capabilities accessible to a subsystem.



EROS evaluation

I No applications ported to it.
I No apples to apples comparison is possible.

I What did they do instead?
I micro benchmarks that are motivated by real performance

bottlenecks from real applications.
I Is this a good practice?



EROS evaluation



Linux capabilities

I man capabilities
I Not the exact same as the capabilities discussed.
I Linux (2.2+) divides the privileges traditionally associated with

superuser into distinct units, known as capabilities, which can
be independently enabled and disabled. Capabilities are a
per-thread attribute.



Linux capabilities

I These were the capabilities discusses last lecture.
I Can be directly applied to containers.
I Enforce the idea of “lest privilege”.
I Capsicum: practical capabilities for UNIX

I A more traditional capabilities method.



Docker seccomp

I Secure computing mode (seccomp) is a Linux kernel feature.
You can use it to restrict the actions available within the
container.

$ docker run --rm \
-it \
--security-opt seccomp=/path/to/seccomp/profile.json \
hello-world

https://docs.docker.com/engine/security/seccomp/

https://docs.docker.com/engine/security/seccomp/


Dynamic Information Flow Tracking (DIFT)

I Sometimes called Dynamic Taint Analysis (DTA).
I Mark data(memory/registers) with a tag that propagates

through program execution.
I What do I mean by tag?

I First versions were 0,1 (trusted, untrusted).
I Metadata that is attached to data.
I Can be a color, label, vector etc..



Reading and writing tags

I Source
I Tags are introduced into a system through a source.

I File, network data, etc.
I Sink

I Sinks are locations in the execution where you check a policy.
I Send, write, conditional jumps, etc.



DIFT

I Five types of dependencies2

I Load Address
I a = b[2]

I Store Address
I b[2] = a

I Computation
I a = b + c

I Copy
I a = b

I Control
I if, switch, test, jump

2SecureProgramExecutionviaDynamicInformationFlow Tracking, Suh et al.



Control dependency

Probably the most difficult, due to it’s indirect effect.

z = 5;
if 4 > y:

z = 10;



DIFT

I pros
I Can be done on binaries.

I Don’t need source code.
I Can set policies to how information is allowed to flow.

I “If privledged data tries to leave the system error”
I cons

I overhead.
I implementation difficulties.



Over-tainting

I An issue that happens with control dependencies

test eax, ebx ; set ZF to 1 if eax == ebx
je 0x804f430 ; jump if ZF == 1

At this point we test 2 registers for equality and then jump if they
are equal. After the je instruction how do we propagate tags/taint?



DIFT use cases

I Catch:
I Buffer overflows.
I SQL injection.
I Directory traversal.
I Command injection.
I SQL injection.
I Cross-site scripting.

I Reverse engineering:
I Find keys in memory.

I Raksha: A Flexible Information Flow Architecturefor Software
Security.



LaTeX links

I https://en.wikibooks.org/wiki/LaTeX
I http://detexify.kirelabs.org/classify.html

https://en.wikibooks.org/wiki/LaTeX
http://detexify.kirelabs.org/classify.html

