Paper Review

Tony Espinoza

am.espinoza@utexas.edu

An Analysis of China's "Great Cannon"

- Background
- Great Cannon
- Evaluation
- History of Use
- Attribution the Great Cannon
- Potential Enhancements
- Conclusion

Background

- ► What is the Great Firewall (GFW,GFC)
 - On path system.
 - **NOT** in path.
 - ▶ What is the difference?
 - ► Can inject additional packets, they cannot prevent in-flight packets from reacing thier destination.
- ▶ How is it different than the Great Cannon?

Background

- What happens if a RST is injected?
- Would the end host still receive the packet sent from the host?
- ► How is packet inspection done?
 - ► GFW runs packet re-assembly and censorship logic in multipole parallel processes.
 - All packets on a connection go to the same process.

Great Cannon

- ► An in-path system
 - ▶ What can an in-path system do?
 - Can it suppress traffic?

Great Cannon

TTL Significance

Let's look at a pcap from homework 1.

Note:

- Censorship is dynamic
 - What works one day might not the next
 - http://www.baiwanzhan.com/
 - 法轮

Great Cannon

Great Cannon

- ► How was the in-path system used to perform a DDOS?
- ➤ Sent 1.75% of visitors to Baidu infrastructure services malicious javaScript.
 - ▶ Why only 1.75%?

Evaluation of Functionality

How did they verify that the GC:

- ► Appears to act probabilistically
- Operates as a separate in-path system
- Appears to be co-located with the GFW
- Was 'aimed' only at specific destination IP addresses

Appears to act probabilistically

- Tested from 4 different IP addresses.
- ▶ One IP was ignored by the GC.
- ➤ The other three the GC responded to 526 out of 30,000 requests.

Operates in-path

- ► GFW showed both the TCP RST as well as the legitimate server reply.
- ▶ GC does not show the server reply, only the injected malicious reply.

Co-located with GFW

- ▶ Used TTL to see where the GFW was located.
- Used TTL to see where the GC was located.
- ► How would you test this?

Was 'aimed' at specific destination IPs

- ► Tested on IP close to Baidu server.
 - GC ignored the request.
 - GFW acted on the censorable requests.

History of Use

- ► Google's Safe Browsing project captured instance of the attack.
 - ► March 3rd April 7th.
- ► They build a pcap analyzer.
 - Ran on LBNL network data.
- Anonymous colleague shared data.
 - One year earlier.

Analysis of GreatFire.org Logs

- ▶ March 18th 11:00 March 19th 7:00 GMT.
- ► Each hour randomly select ~30MB of compressed logs.
- ▶ Use MaxMind GeoIP2 Lite DB.
 - MaxMind is a IP address to lat,long database.

Analysis of GreatFire.org Logs

IP Address Origin By Country (Top 5 + .CN)

Number of Unique IP Addresses Seen in Logs

Analysis of GreatFire.org Logs

- ▶ Why are TW and HK so high up?
- ▶ Why does CN not have more unique IPs?

Attribution the Great Cannon

- ▶ Where does the GC operate?
- ► Who built the GC?
- ▶ What is its use?
- ► Who was it attacking?

Where does the GC operate?

- co-located with the GFC.
 - Tested from 2 different international Internet links into different Chinese ISPs.
 - Found the GFW and GC were co-located in both.
 - Suggests a governmental actor.

Who built it?

- ▶ The authors suggest the same architect of the GFW.
 - ▶ Both have similar behavior of TTLs.

What is its use?

- ▶ Not suited for censorship.
 - ► Why?
 - Only looks at first packet.
 - Targets specific IP destinations.
- ► MITM to inject traffic.

Who was it attacking?

- ▶ GreatFire.org
 - Service targeted provides proxies to bypass the GFW (CloudFront)
- ► GitHub
 - ► Hosted 2 GreatFire.org repos
 - ▶ Why attack github and not block it?
 - ► They tried to, but got negative reaction.

Potential Enhancements

- ► Can switch targeting *source* IP, to *destination* IP and target individuals.
- Could fix its network artifacts.
 - Make it harder to detect.
- Could be used to intercept email.

Questions

▶ Would this work with HTTPS connections?

What next?

- ▶ In the CG paper the infrastructure is set up to aid a nation state.
- ▶ What can be done when there is no infrastructure?
- ► Can we exploit the protocols?
 - Yes.
 - ► How?

Exploiting protocols

- Can we scan a machine without giving ourselves away as the scanner?
- Can we find a machine behind a firewall?
- We can see if two machines are communicating.
 - ► Trivial if you are on the path between the two hots.
- ▶ What about if you are off path?
 - What would off path measurement look like?

Network side channels

- What is a side channel?
- ▶ What do I mean by network side channel?
 - ▶ A side channel in the implementation of a networking protocol.

IPID side channel

- One way to choose an IPID is globally incrementing
 What does this look like?
- ▶ What can we do with a globally incrementing IPID?
 - ► Idle scan.

Idle scan

- ► A scan technique where you don't use your IP to scan the victim.
- Setup
 - Zombie
 - Victim
 - Attacker
- ▶ Proposed by Antirez in 1998

Idle scan

- Caveats
 - Not many globally incrementing IPIDs any more.
 - ▶ Machine must be idle so you don't have noise.
- Overcome caveats?

Scan through firewall?

- Use SYN cache as a shared limited resource
- ► Fill the SYN cache
- ► Send spoffed SYN packet, two outcomes.
 - ► Get RST
 - Room is SYN chache.
 - Attacker will get a SYN/ACK.
 - Get nothing
 - SYN cache is full
 - Attacker will get a SYN cookie.