Lab 2

Due: Sept 25, 2019 (Part 1 & 2) and Oct 5, 2019 (Part 3)

Containerization, Orchestration and SELinux

We've divided this lab into two halves. The first half is comprised of parts 1 and
2, the second half is part 3. This will help people manage their time on what is
a larger lab than lab 1.

Please submit a separate report and submission zip/archive for each due date.
Your first submission will contain the report for parts 1 and 2 and any necessary
files. Your second submission will contain these items for part 3.

First Half: Due September 25, 2019

Part 0: Prerequisites

You’ll be performing all steps of the lab on the Ubuntu VM image provided in
the link. It is an extension on the previous Ubuntu image but has more compute,
memory and storage which is needed for this part of the lab.

https://drive.google.com/file/d /1LjbZwfco2QDbVMXMMkTp6i56hkWD7F0
Q/view?usp=sharing

Part 1: Vulnerable web-apps

la) Set up a web-service in a container

In this first section, we’ll set up a web app with exploitable vulnerabilities in a
container and use strace to identify the presence of those vulnerabilities.

1. Install Docker.

sudo apt update
sudo apt install docker.io docker-compose

You’ll need to add your user to the “docker” group in order to run Docker
without root privileges (i.e. without sudo). Execute the following command and
restart your VM:

https://drive.google.com/file/d/1LjbZwfco2QDbVMXMMkTp6i56hkWD7F0Q/view?usp=sharing
https://drive.google.com/file/d/1LjbZwfco2QDbVMXMMkTp6i56hkWD7F0Q/view?usp=sharing

sudo usermod -a -G docker $USER

After rebooting, execute the command groups and you should see docker in
the list.

2. Set up the Damn Vulnerable Web App container in Docker. You should
follow the following guide from Docker on how to do this:

https://hub.docker.com/r/vulnerables/web-dvwa/
We recommend setting the difficulty to low.
3. PHP Injection

Use the file upload portal to upload your own (malicious) PHP to the website.
PHP is a server-side scripting language that is typically embedded in a static
HTML page. The server will execute all PHP in the page before transmitting
the final page to the client.

Create a PHP file that does the following:

e prints out the path to the current directory,

o prints the contents of the current directory,

e prints the contents of the root of the filesystem at /,

e and prints the number of processes running in the system.

Please include the PHP file in your lab submission archive.

The PHP function shell_exec should come in handy:

o https://www.php.net/manual/en/function.shell-exec.php
e The page above contains example code to get you started.

The following bash command will print the number of processes running;:

e ps aux --no-headers | wc -1

Once you upload the PHP file, DVWA will tell you the path where it was
uploaded so that you can access it. When you navigate to that page, the server
will execute your PHP. Include the server’s output in your report.

e« Look at the contents of the root of your filesystem by running
1s / in your VM. Does the server’s view of the filesystem root
differ in any way?

¢ What about the number of processes that the server thinks is
running?

¢ Why might this be the case?

4. Content Security Policy Bypass

https://hub.docker.com/r/vulnerables/web-dvwa/
https://www.php.net/manual/en/function.shell-exec.php

Navigate to the CSP Bypass tab. We leave it up to you to read the links under
“More Information” and figure out how to exploit this vulnerability.

You must leverage this vulnerability to execute Javascript that pops up an alert
window with some text. Include a screenshot of the popup window over
DVWA in your report.

Describe how you exploited this vulnerability in your report. Include
any source files in your lab submission archive.

5. SQL Injection

Navigate to the SQL Injection tab. We leave it up to you to read the links under
“More Information” and figure out how to exploit this vulnerability.

You must leverage this vulnerability to extract the username and password of
every user account in the database. Make sure to test your findings at the
login prompt. Include a table of the usernames and passwords in your
report.

Describe how you exploited this vulnerability in your report. Include
any source files in your lab submission archive.

6. Conclusion

e In what ways does containerizing the web app limit the attack
surface? In what ways does it fall short?

1b) Getting familiar with strace

strace is a tool used to profile the system calls being executed by a process.
Read up on strace: http://www.strace.io/

strace attaches to processes and logs the system calls it makes, including
arguments. You’ll use strace to detect a DVWA exploit by looking for suspicious
system calls. Before continuing, shut down the container you opened for the
previous exercises. You can do this by simply entering Ctrl-C at the terminal
running your container.

When you installed Docker, it ran a process on your system called containerd.
You can read more about containerd here: https://blog.docker.com/2017/08/
what-is-containerd-runtime/ Essentially, containerd executes system calls on
behalf of your container. Therefore, to monitor the system calls run by our web
app, we will need to run strace on containerd. See if you can see containerd
in your list of running processes:

e ps -ef | grep containerd
One line should look like the following;:
root 651 1 0 09:17 7 00:00:46 /usr/bin/containerd

http://www.strace.io/
https://blog.docker.com/2017/08/what-is-containerd-runtime/
https://blog.docker.com/2017/08/what-is-containerd-runtime/

root is the user that ran the process. 651 is the process ID (or PID) of
containerd. 1 is the parent process. On your system, the PID will almost
certainly be different. Make note of the PID of containerd, you’ll need it next.

To monitor the system calls made by the Damn Vulnerable Web App, we will
attach strace to the containerd process and log its system calls as well as the
system calls of its child processes.

Read the help text of strace (strace -h) to understand its arguments. Then
compose an strace command that will:

e Attach to containerd using its PID
e Log output to a file
e Trace all forked children of containerd

Once strace is attached, leave it running and start up your Damn Vulnerable
Web App container:

docker run --rm -it -p 80:80 vulnerables/web-dvwa

Set up DVWA as before and navigate to the Command Injection tab. On this
screen, you'll see a text box where you can enter an IP address to ping. Behind
the scenes, the server is quite literally executing:

ping <your input string here>

If we start our input string with a semicolon, we can close the ping command,
and then the remainder of the string will be executed as a separate command.
This means we can run arbitrary commands on the server! We will aim to
identify this exploit using strace.

Inject the following bash command into the web app:
echo "malware" > /tmp/maliciousfile
Now open the log file produced by strace.

Identify the system calls in the log that create and write to the file
/tmp/maliciousfile and include those lines of the log in your report.

You can use grep to search for the filename /tmp/maliciousfile in the log file.

1c) Limit who on the network can access the website using iptables

iptables is a command-line firewall utility that uses policy chains to allow or
block traffic. When a connection tries to establish itself on your system, iptables
looks for a rule in its list to match it to. If it doesn’t find one, it resorts to the
default action.

Reference: https://www.howtogeek.com/177621 /the-beginners-guide-to-iptabl
es-the-linux-firewall/

https://www.howtogeek.com/177621/the-beginners-guide-to-iptables-the-linux-firewall/
https://www.howtogeek.com/177621/the-beginners-guide-to-iptables-the-linux-firewall/

1. iptables should already be installed. If not, run sudo apt install
iptables

2. Disable the existing firewall: systemctl mask firewalld && systemctl
stop firewalld

3. Use the iptables command to allow only a single machine to access the
web server on port 80. You should test it with your own ip address, but
for submission you must only allow 10.157.90.8.

Ubuntu iptables reference: https://help.ubuntu.com/community/IptablesHowTo
Include in your lab submission archive:

e A file containing your iptables rules. You can print out all rules with the
command:

sudo iptables -8

Part 2: SELinux
Please look through the below resources to get an introduction to SELinux before
beginning the lab.

1. https://wiki.gentoo.org/wiki/SELinux (Quick Introduction, Tutorials, etc.)

2. https://docs-old.fedoraproject.org/en-US/Fedora/25/html/SELinux_ U
sers_and__Administrators_ Guide/index.html

3. https://wiki.gentoo.org/wiki/SELinux/Tutorials/Where to_find SEL
inux_ permission_ denial details#SELinux_ logging

2a) Setup

1. Install SELinux and activate it:

sudo apt install selinux-basics selinux-policy-default policycoreutils

sudo selinux-activate
Then reboot.

2. As root, run sestatus -v to verify that SELinux is enabled and currently
enforcing.

3. SELinux will now audit file accesses on your system. You can view the
audit log in /var/log/audit/audit.log and/or using journalctl.

2b) Create a simple policy module

In this problem you will create a simple policy module. You will write a simple
C program that creates a file and writes to it. The policy will enforce that files

https://help.ubuntu.com/community/IptablesHowTo
https://wiki.gentoo.org/wiki/SELinux
https://docs-old.fedoraproject.org/en-US/Fedora/25/html/SELinux_Users_and_Administrators_Guide/index.html
https://docs-old.fedoraproject.org/en-US/Fedora/25/html/SELinux_Users_and_Administrators_Guide/index.html
https://wiki.gentoo.org/wiki/SELinux/Tutorials/Where_to_find_SELinux_permission_denial_details#SELinux_logging
https://wiki.gentoo.org/wiki/SELinux/Tutorials/Where_to_find_SELinux_permission_denial_details#SELinux_logging

created by that program have a specific label. Your program will also attempt
to read from a secret file that it does not have access to.

1. Clone the entnetsec branch of the labs-sec repository from https://bitb
ucket.org/utspark /labs-sec.git into your home directory.

git clone -b entnetsec https://bitbucket.org/utspark/labs-sec.git ~/labs-sec
2. Navigate to labs-sec/lab2/simple_example.

3. There are two files in the simple_ module, please go through and understand
them.

(a) The file context simple.fc. In this file we associate the user, role, type,
and level to each of the files the policy will manage, potentially using
regular expressions.

(b) The type enforcement simple.te. This file describes what is allowed
by our policy rules.

4. Write a C program simple.c that does the following:

(a) creates the file labs-sec/lab2/simple__example/data/simple.txt with
the text “Hello World!” in it
(b) reads and prints the contents of labs-sec/lab2/simple example/data/secret.txt

5. Compile your program with gcc -o simple simple.c.

6. Now compile the simple policy module and load it by running make &&
sudo semodule -i simple.pp.

7. Run sudo semodule -1 | grep simple and verify that the simple mod-
ule is one of the policy modules in the system.

8. Now we need to apply the file context of our policy to label the files and
directories. Run restorecon -Rv labs-sec/lab2/simple_example to
recursively apply the labels.

9. Run 1s -Zto observe that your simple executable has the simple_exec_t
label.

10. Next we will add a systemd service to launch our program, otherwise it
will inherit the context from our current unconfined process. Note you can
see your current context with the command id -Z.

11. Copy the simple.service file to /etc/systemd/system.
12. You can now start the service with systemctl start simple.
13. Run journalctl -xe to see the logging for the simple service.

14. You should observe an audit error similar to this when your program
attempts to read secret.txt:

AVC avc: denied { read } for
pid=3126 comm="simple" name="secret.txt" dev="sdal" ino=3277651

https://bitbucket.org/utspark/labs-sec.git
https://bitbucket.org/utspark/labs-sec.git

15.

scontext=system_u:system_r:simple_t:s0
tcontext=unconfined_u:object_r:user_home_t:s0O
tclass=file

Run 1s -Z data and observe that simple.txt has been created with the
simple_var_t type.

Include the following in your lab submission archive:

simple.c source file

simple.pp policy module

Screenshot of 1s -Z output from step 15.
Screenshot of your log denying access to secret.txt.

Questions to answer in your report:

1.

2.

Explain the contents of simple.fc. What role does this file play in defining
our SELinux Mandatory Access Control policy?
Do the same for simple.te.

Second Half: Due October 5, 2019

Part 3:
3a) Orchestration with Kubernetes

We will learn about container orchestration and role based access control of
services using Kubernetes. Kubernetes is used in industry extensively to develop
and deploy production grade services and applications. In the previous section we
had a docker container which ran the DVWA. The application has a web-server
and a SQL Database both of which are running on the same container. In this
section we will learn how to build those container images and run the server and
SQL on different containers. We will see how to forward network ports from
container to the host system so that these services can talk to each other.

Docker applications

Docker configurations are usually written in a Dockerfile. This docker file is
then read and built into an image (docker build -t <image>:<tag> .). The
image is then used to run an application (docker run <image>:<tag>). To
simplify this process, we use docker-compose which reads docker files, builds
the image and then runs it.

1. Clone the git repo to get all the necessary files for the lab:
git clone https://github.com/prateeksahu/simplePhpSQL_k8s.git
2. Run the application using docker-compose up.

3. Open http://localhost:8000 on the browser. Read the file under
src/index.php and understand how the connection to the MySQL database
is opened.

4. Understand the Dockerfile and docker-compose.yml files.
Some useful references:

 https://docs.docker.com/compose/compose-file/
o https://docs.docker.com/engine/reference/builder/

Answer the following Questions :

1. What IP address and port does the web-service use to connect to the SQL
DB? Refer to the source file src/index.php to find the answer. Explain
what you see on the homepage http://localhost:8000.

2. Do necessary changes so that the web-server now serves at localhost:9000.
Explain the change and give screenshots.

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/engine/reference/builder/
http://localhost:8000

So now when a request comes to the web-server running in a particular container,
the server will connect to the DB to retrieve table entries. When in a production
grade system, there can be thousands of requests coming in every second, often
too many for a single web server to handle with reasonable latency. Consequently,
developers want to be able to dynamically start multiple instances of a given web
application to handle the quantity of traffic coming in at any given time. Scaling
of applications dynamically is difficult when we use native docker. Kubernetes
fills in this gap. For our labs we will use microk8s, which is a flavor of kubernetes
which is fully supported on Ubuntu. I urge everyone to use the given Ubuntu
VM, since the rest of the lab is on microk8s and I cannot guarentee behaviour of
it on Mac and Windows systems.

Install Kubernetes

1. snap install microk8s --classic

2. Similar to docker, we want to add the user to microk8s group to avoid
repeated “sudo”s. You will need to reboot the VM afterwards.

sudo usermod -a -G microk8s $USER

3. microk8s.enable registry dns dashboard. Make sure all the pods
are healthy and running before proceeding with the lab. Check status
with microk8s.kubectl get pods --all-namespaces. In case you
see containers in ContainerCreating or Unknown state, disable all
(microk8s.disable <service>) and try enabling each of the services one
by one instead of all together.

4. sudo microk8s.enable rbac

This enables various features of kubernetes that we are going to use as a part of
this lab.

¢ Registry is the local repository where microk8s, builds/pulls images to.

o« DNS is the service which takes care of automatic hostname to container
IP mapping for ease of DNS lookup. For kubernetes hostname is same as
the service name.

e Dashboard is a web-ui to see the health and deployment status of all the
pods in a k8s cluster

« RBAC is a feature in k8s to have Role Based Access Control over the
various Pods and/or the Cluster. It is used to provide access control
security in production level application deployment.

5. We need to get the image that we built eariler to be available to microk8s,
since microk8s cannot see images that we built using docker commands.
Check your built images by docker images.

6. Push the web-service image to microk8s registry using the following com-
mands

docker tag <image-id> localhost:32000/<image-name>:k8s
docker push localhost:32000/<image-name>

Although we can push both the web-service and mysql images, it is sufficient to
push just the web-server since micrk8s can pull mysql image from internet.

7. Next we run the web-application in kubernetes:

microk8s.kubectl apply -f webserver.yaml
microk8s.kubectl apply -f webserver-svc.yaml
microk8s.kubectl apply -f mysql.yaml
microk8s.kubectl apply -f mysql-svc.yaml

To delete or remove a service or deployment you can make use of the command
microk8s.kubectl delete -f <filename.yaml>.

Answer the following Questions :

1. Check the deployment of pods (containers) by microk8s.kubectl get
pods. Check the service by microk8s.kubectl get services. You can
get all pods and services by adding the keyword --all-namespaces to
each of the above commands. Provide screenshots for both. What are the
different namespaces you observe?

2. Explain the output of deployments and services. Where do we specify how
many instances of each application is to be deployed?

3. Change the deployment to have 2 instances of web-servers and submit the
screenshots.

Helpful Tips
You can ssh into a container by
docker exec -it <conainer-name> /bin/bash
You can check all running docker containers by
docker ps

You can connect to the MySQL container and execute queries using the MySQL
command line by

mysql --user=<username> --password
You can also ssh into kubernetes pod using the command

microk8s.kubectl exec -n <namespace> pod/<pod-name> -i -t -- bash -il
You can print logs of any pod using the command

microk8s.kubectl logs -n <namespace> pod/<pod-name> -v=9 --tail=20

10

RBAC

RBAC uses the rbac.authorization.k8s.io API group to drive authoriza-
tion decisions, allowing admins to dynamically configure policies through the
Kubernetes API.

Details of RBAC, Users, ServiceAccounts can be found on:
 https://kubernetes.io/docs/reference/access-authn-authz/rbac/

For the lab we will create a ServiceAccount and give it some permissions to see
how that works.

1. Create a Service Account:

microk8s.kubectl create serviceaccount user-sa --namespace default
2. Create a Role for this Service Account:

microk8s.kubectl apply -f user-role.yaml
3. Bind the Service Account and Role:

microk8s.kubectl apply -f sa-role-bind.yaml

4. Run Kubernetes Dashboard by exposing the dashboard service to an
external port. You can edit the service by:

microk8s.kubectl -n <namespace> edit service <service-name>

Changing port type to NodePort or LoadBalancer instead of ClusterIP. Find
the exposed port for the Dashboard service and access the Dashboard at
https://localhost:<port-num> on a browser.

5. To login to the Dashboard we need Authorization tokens. Here we will use
the service account we had created to access the service. We need to find
the account token by running

microk8s.kubectl get secret

and appending --all-namespaces or -n <namespace> for appropriate names-
pace account token names.

6. We get the token by trying to describe the secret associated with the
appropriate token:

microk8s.kubectl describe secret <token-name>

We need to specify the namespace if the token name is associated with multiple
namespaces.

7. We can login to the Kubernetes Dashboard using the token we find when
we describe the token.

Answer the following Questions :

11

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

1. On what port did you expose the dashboard service and how did you find
it?

2. Explain the Dashboard when you login using the user-sa service account.
Do you see all the pods that you see when you run microk8s.kubectl
get pods --all-namespaces? Why or why not?

3. Create another service account which can access just the kube-system
namespace. This service should have properties get, list, create, update &
delete. Provide code and steps how you achieved this. Provide screenshots
of the Dashboard.

3b) Creating a kubernetes cluster for DVWA

In the above section we saw how to build a simple web-app backed by a MySQL
server into a kubernetes application. The next task is to build the DVWA
we saw earlier into such a kubernetes application. When we have a single
container containing all the components of the application, any vulnerability in
one service exposes all other running services too. Using a kubernetes cluster,
we cleanly separate this. We will learn how a fault-tolerant system can also be
deployed using kubernetes. We need to clone the DVMA container github repo
git clone https://github.com/opsxcq/docker-vulnerable-dvwa.git and
start by building the images. Following are top level guidelines which should
help you in achieving your target.

1. Understand the Dockerfile and split it into separate Dockerfiles, one for the
web-app and one for the database. You can get help from the Dockerfile
and docker-compose files we had already created to achieve this step.

2. You might need to fiddle with the source code in the repository so that the
web-app container now talks to the new container which runs the database.

3. Once you have built the appropriate images, edit the kubernetes deployment
and service pods so that they deploy the new images. Access the DVWA
application.

4. Start with just one instance of each of the services. Limit CPU and Memory
for your web-app pods by using resource limiting features by kubernetes as
described in https://kubernetes.io/docs/concepts/configuration/manage-
compute-resources-container /#meaning-of-memory. We suggest a memory
limit of atleast 64Mi and compute limit of at least 100m. You can check
the deployed pods resource consumptions using microk8s.kubectl top
pods -n <namespace>.

Answer the following Questions :

1. All files used for the lab should be in the github repository. Mention
the commands used to transfer the images into kubernetes registry in
the README file. Create a commit of all the changes and submit the

12

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-memory
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-memory

patch file of the change. You can create a patch by running the following
command. This creates patch file between last two commits. If you have
multiple commits, edit the git diff appropriately to encorporate all your
changes.

git diff HEAD~1..HEAD > patch.diff"

2. Login to DVWA and try to crash the machine using a forkbomb attack.
Try to access the webpage again. Does it work? Explain what happened.
Show appropriate screenshots to backup your explanation.

3. Edit the web-app deployment to launch multiple instances of the service
instead of just one. You might want to delete the existing web-app pod
by either deleting using the deployment yaml or force delete of pod
using microk8s.kubectl delete pods -n <namespace <pod-name>
--grace-period=0 --force. Reapply the deployment yaml for the
effects to take place.

4. Repeat the forkbomb and try to re-connect to the application. Does it
work? Explain and provide appropritate screenshots. What could be the
various DevOps use-cases of using kubernetes that you learnt from this
experiment?

Feedback

We would like to get your feedback so that we can improve these labs in the
future.

What did you like/dislike about this lab? Was it helpful in learning the material?
Which sections were most/least helpful?

13

	First Half: Due September 25, 2019
	Part 0: Prerequisites
	Part 1: Vulnerable web-apps
	1a) Set up a web-service in a container
	1b) Getting familiar with strace
	1c) Limit who on the network can access the website using iptables

	Part 2: SELinux
	2a) Setup
	2b) Create a simple policy module

	Second Half: Due October 5, 2019
	Part 3:
	3a) Orchestration with Kubernetes
	Docker applications
	Install Kubernetes
	RBAC
	3b) Creating a kubernetes cluster for DVWA

	Feedback

