
Paper Review

Tony Espinoza

am.espinoza@utexas.edu



Nazca: Detecing Malware Distribution in Large-Scale
Networks

I A study of how clients in real-world networks download and
install malware.

I Nazca is a system that detects infections in large networks.



Nazca: Detecing Malware Distribution in Large-Scale
Networks

I A study of how clients in real-world networks download and
install malware.

I Nazca is a system that detects infections in large networks.



Nazca does not:

I Operate on individual connections.
I Look at the server hosting the malware.
I Look at the properties of the downloaded program.
I Suffer from coverage gaps in blacklists.



Nazca

I Is a system that aims to detect web requests that are used to
download malware binaries.

I Idea is that you need to zoom out to see the whole picture.
I Ideal use case is a large scale:

I The ISP level.
I Large enterprise network
I University



Nazca



Infection process

I Three phases
I Exploitation
I Install
I Control



Antivirus techniques

I What does AV rely on?
I Many antivirus programs rely on signatures

I What are signatures?
I What is wrong with signatures?

I What part of the infection process will AV be triggered?



Data set

I One week’s worth of traffic
I From a commercial ISP.
I What ISP?



Extraction

I Collect pcap files
I Extract meta-data for connection of interest
I Connection of interest is?

I A MIME type not in their blacklist.
I Re-assemble packets run file on the data
I Try to decompress payload



Extraction

I Record
I client IP.
I server IP.
I URI the client requested.

I URI = Uniform Resource Indicator.
I URL = Uniform Resource Locator.
I URL is subset of URI.

I User-Agent.
I Hash of the first k bytes (kilobyte).



Detection

I Use the four techniques to find candidates for malware.
I Detecting file mutations.
I Detecting distributed hosting.
I Detecting dedicated malware hosts.
I Detecting exploit/download hosts.

I Why these four?



Detect file mutations

I Looks for download records that are:
I Associated with a single URI.
I Download more than n different files.



Detecting file mutations

I What about legit sites that do this?
I They tend to be anti-virus sites.
I Can white-list easily.



Detecting Distributed hosting and domain fluxing.

I Attackers need their own CDN.
I Recap, what is a CDN?
I Why?

I Domain fluxing?
I The use of many domains to distribute malware.
I Why would you want to do this?



Find malicious vs benign CDNs

I Six features
I Domain co-location.
I Number of unique top-level domain names.
I Number of matching URI paths.
I Number of matching file names.
I Number of URIs per domain.
I Served file types.



Classifier

I Built a classifier to determine benign or malicious CDN.
I Small data set of manually labeled data

I How small?
I What was the split of benign vs malicious?
I Does it matter?
I ???



Detection of dedicated malware hosts

I Focus on backend servers that only host malicious binary.
I How does traffic get to the host?

I Redirection.
I What does this redirection help with?

I Harder to detect.



Detection of dedicated malware hosts

I Search for IPs that are involved in a single executable download
I Remove all executables that are hosted by other domains

I Does this leave anything out?
I Why is this OK?

I Previous technique handles it.



Detection of exploit/Download hosts

I Visit exploit website -> shellcode silently downloads the second
step malware binary

I Often times the User-Agent strings do not match.
I This method keeps track of sites that download with a different

User-Agent string.
I False positives?

I Apps in iOS have different user agent strings.
I Same site multiple browsers.



Detection

I Make neighborhoods of candidates.
I Compute a confidence score.

I Based on how many other candidates appear in the same graph
and how close they are to the input candidate in the graph.



Detection



Graph Generation

I Define malicious neighborhood:
I The collection of malicious activities related to a suspicious

candidate.
I This is the starting point of the graph.



Graph nodes are:

I IP addresses
I Domain names
I Fully qualified domain names (FQDN)
I URLs
I URL paths
I File names
I Downloaded files (hash value)



Building a graph

I Incrementally.
I Start with a URL or FQDN.
I Iterate over series of growth operations.
I Limit size to 4,000 nodes.



Growth operations

I Check for relation to entities not in the graph.
I URLs belonging to a domain or FQDN
I Files being downloaded form the same URL
I Domains/FQDNs being hosted on a server
I URLs having the same path or file name
I Files being fetched by the same clients



Building a graph



Post-processing

I Remove un-useful parts of the graph.
I Clients that are leaves in the graph with a single parent.



Graph building rules

I Build towards maximum interest.
I Towards domains that are not in the graph.

I Only add URLs that are suspicious.
I Avoid adding popular domains > 10% of hosts.



Metric

I Claim an analyst can tell if a graph is benign or malicious.
I Devise a method to check the graph automatically.
I Weight the links.

I url ←→ payload:1
I url ←→ server:1
I url ←→ client:4
I 2 for all other cases.



Metric

I Lower numbers are better.
I Mj =

∑
i=candidates

1
shortest_path(i , j)



Evaluation

I Data
I Training was 2 days

I April 17 and August 25, 2012
I Test data was 7 days

I October 22-28, 2012



Evaluation

I Ground truth
I Where do you get ground truth?

I Virus total.
I Where did they get the executables?

I Downloaded them from the URL.
I Issues here?



Evaluation

Technique Type
Malware
Train Test

Benign
Train Test

Unknown
Train Test

File Mutations
URLSs

43 8 0 11 16 107

Distributed FQDNs
Hosting

45 155 4 17 42 238

Isolated FQDNs
Housing

68 145 12 233 47 140

Exploit/ Download
Hosts FQDNs

29 16 9 3 28 152



Detection of file mutations

I Need small AV white list
I Trained simple classifier using 5 fold cross validation.

I Found 12
I 91.1% TP
I 5.8% FP
I TN, FN ???



Detection of distributed Hosting Domain Fluxing

I Leave one out cross validation
I Decision tree classifier
I Learns that malicious distributed hosting infrastructure:

I Hosts primarily executables
I Spans across many first-level domains
I Spans across just 2 or 3 domains



Detection of distributed Hosting Domain Fluxing



Detection of dedicated malware hosts

I Train single feature classifier
I Uses the User-Agent
I Choose a threshold the equates to 90%

I 90% of the HTTP requests made with User-Agent in the
dataset have delivered executables.



Detection step

I Training
I 77.35% precision 65.77% recall on malicious.
I 95.7% precision and 97.53 recall on the benign.

I Test
I 59.81% precision 90.16% recall on malicious.
I 99.69% precision 98.14% recall on benign.



Detection step

I Malicious class precision, recall?
I Benign class precision, recall?
I What happened to regular old precision, recall, accuracy, f1?
I What about baseline?
I Step back to last table, confusion matrix?



Why HTTP?

I How much traffic was HTTP
I How much traffic was HTTPS

I HTTPS<1%



What about switching?

I Switching would:
I Be impractical
I Cause them to self-sign or get a legit cert



How to evade?

I Use HTTPS
I Use custom encryption
I Piggyback

I Nazca can not detect piggy backing legit services
I Google
I Dropbox

I Keep infrastructure small
I Keep churning malware infrastructures
I Disguise as white-listed file type



What did you think?

I Good?
I Bad?
I Questions on?

I Evaluation.
I Results.
I ???



Outside the closed world

The idea of specifying only positive examples and adopting a
standing assumption that the rest are negative is called the closed
world assumption



Outside the closed world

[The assumption] is not of much practical use in real- life problems
because they rarely involve “closed” worlds in which you can be
certain that all cases are covered



Outside the closed world claim

“Our main claim is that the task of finding attacks is fundamentally
different from other applications, making it significantly harder for
the intrusion detection community to employ machine learning
effectively.”



NIDS

I Network intrusion detection systems (NIDS)
I Misuse-detection.
I Anomaly-detection.

I Which is most used in practice?
I Misuse detectors
I Why?

I Anomaly detectors rely on ML



What is anomaly detection good for in network security?

Anomaly detection is likely in fact better suited for finding variations
of known attacks, rather than previously unknown malicious activity.



Why not well suited for ML?

I A very high cost of errors.
I Lack of training data.
I A semantic gap between results and their operational

interpretation.
I Enormous variability in input data.
I Fundamental difficulties for conducting sound evaluation.



False positives in IDS systems

I What is an acceptable false positive rate?
I What about false negative rate?



Explore other domains

I Ham vs Spam.
I Product recommendation.
I Auto Correct.
I Auto Translate.



Semantic gap

I Identify deviations from the normal profile.
I What does it mean.

I Abnormal activity vs attacks



Variability in input data

I It is crucial to acknowledge that in networking a high amount
of variability occurs regularly
I Why?

I How to address this?
I Aggregate data.



Evaluation

I Authors claim:
I More difficult than building the detector itself
I Agree, disagree?

I Key issues:
I Finding Data.
I Interpreting results.



Key to understand the threat model

I What kind of environment does the system target?
I What do missed attacks cost?
I What skills and resources will attackers have?
I What concern does evasion pose?


