
Orchestration

Tony Espinoza

am.espinoza@utexas.edu

Docker overview

I Docker is not a virtual machine
I Docker is a containerization system.

I Runs on your OS natively

Docker VS Virtual Machine1

1https://docs.docker.com

Kubernetes

I Orchestration software
I Deployment
I Management
I Scaling

Terminology

I Pod
I One or more containers on a machine.
I Smallest deployable unit.

I Node
I Is the worker machine.
I Nodes run pods.
I Kubelet runs in a node to monitor pods.

I Master
I Coordinates all activity in your cluster.
I Communicates with kubelet.

I yaml
I Configuration file
I Yet Another Markup Language

Layout

Deployment

I Kubernetes is software that aids in the deployment of
containers (we’ll use docker).

I Can specify how to deploy in detail.
I How many instances.
I What services.
I Layout.
I Resources.
I Exposed ports.
I All with a yaml.

yaml
apiVersion: apps/v1
kind: Deployment
metadata:

name: webserver
labels:

app: apache
spec:

replicas: 3 #how many webservers to deploy
selector:

matchLabels:
app: apache

template:
metadata:

labels:
app: apache

spec:
containers:
- name: php-apache

image: localhost:32000/website:k8s
imagePullPolicy: Always
ports:
- containerPort: 80

Management

Kubernetes master node:

I Manages networking between nodes.
I Communication between nodes.
I In event of a crashed pod:

I Kubernetes will start a new instance.
I Pods are monitored by kubelets
I Kubelets: service monitor for a Node.

Kubelets

I Keep track of pods in the node.
I Communicate with the master node.
I Helps the master node to keep the cluster a reflection of the

yaml file.

Scaling

I Kubernetes can be scaled to work across systems.
I Load balancing

I Balance access across containers (duplicate).
I Spin up new machines under heavy load.

Storage

I Like docker, Kubernetes does not have persistent storage.
I You must set up storage separately.

I Ever new instance is fresh.

Volumes

I Is the way you create persistent storage.
I In the container section of the yaml file specify mount point.

Volumes

apiVersion: v1
kind: Pod
metadata:

name: test-pd
spec:

containers:
- image: k8s.gcr.io/test-webserver

name: test-container
volumeMounts:
- mountPath: /test-pd #inside the container

name: test-volume
volumes:
- name: test-volume

hostPath:
directory location on host
path: /data #on the host machine
this field is optional
type: Directory

Volumes

I Can be shared across pods.
I Can set capacity.
I Other specifications (access modes R,W . . .)

Networking

I Pods have 3 types
I Load balance

I Does load balancing.
I Node port

I Exposes the application on a port across each of your nodes
I Cluster

Networking

Networking

I Every pod has its own unique IP
I Containers in a pod share namespaces

I Does this mean that they have the same view of the network?

Networking

Role based access control

I There are users, and service accounts.
I RBAC allows us to limit what resources are available and what

they can do to those resources.
I Normal users assumed to be managed by outside independent

service.
I Service account, managed by Kubernetes.

RBAC

I Verb: get, list, create, delete. . .
I Resources: pod, volume, secret, service, endpoint. . .

RBAC

Two types of roles.

I Namespace
I Can do RBAC limiting namespace

I Cluster
I Can do RBAC limiting clusters

I RBAC Kubernetes manual

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

RBAC

Implement RBAC in two steps

1. Create a role with a list of rules.
2. Bind the created role to a user or service account.

