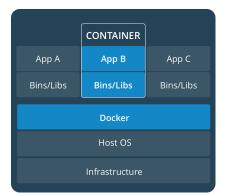
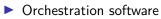
Orchestration


Tony Espinoza

am.espinoza@utexas.edu

Docker overview

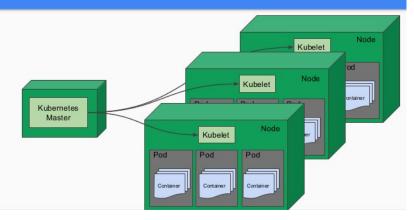
- Docker is not a virtual machine
- Docker is a containerization system.
 - Runs on your OS natively


Docker VS Virtual Machine¹

	M	
Арр А	Арр В	Арр С
Bins/Libs	Bins/Libs	Bins/Libs
Guest OS	Guest OS	Guest OS
Hypervisor		
Infrastructure		

¹https://docs.docker.com

Kubernetes


- Deployment
- Management
- Scaling

Terminology

- Pod
 - One or more containers on a machine.
 - Smallest deployable unit.
- Node
 - Is the worker machine.
 - Nodes run pods.
 - Kubelet runs in a node to monitor pods.
- Master
 - Coordinates all activity in your cluster.
 - Communicates with kubelet.
- yaml
 - Configuration file
 - Yet Another Markup Language

Layout

Kubernetes basic architecture

Deployment

- Kubernetes is software that aids in the deployment of containers (we'll use docker).
- Can specify how to deploy in detail.
 - How many instances.
 - What services.
 - Layout.
 - Resources.
 - Exposed ports.
 - All with a yaml.

yaml

```
apiVersion: apps/v1
kind: Deployment
metadata:
  name: webserver
  labels:
    app: apache
spec:
  replicas: 3 #how many webservers to deploy
  selector:
    matchLabels:
      app: apache
  template:
    metadata:
      labels:
        app: apache
    spec:
      containers:
      - name: php-apache
        image: localhost:32000/website:k8s
        imagePullPolicy: Always
        ports:
        - containerPort: 80
```

Management

Kubernetes master node:

- Manages networking between nodes.
- Communication between nodes.
- In event of a crashed pod:
 - Kubernetes will start a new instance.
 - Pods are monitored by kubelets
 - Kubelets: service monitor for a Node.

Kubelets

- Keep track of pods in the node.
- Communicate with the master node.
- Helps the master node to keep the cluster a reflection of the yaml file.

Scaling

- Kubernetes can be scaled to work across systems.
- Load balancing
 - Balance access across containers (duplicate).
 - Spin up new machines under heavy load.

Storage

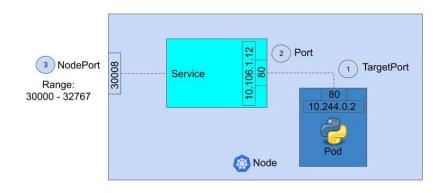
Like docker, Kubernetes does not have persistent storage.
 You must set up storage separately.

Ever new instance is fresh.

Volumes

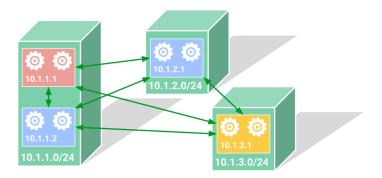
- Is the way you create persistent storage.
- In the container section of the yaml file specify mount point.

Volumes


```
apiVersion: v1
kind: Pod
metadata:
  name: test-pd
spec:
  containers:
  - image: k8s.gcr.io/test-webserver
    name: test-container
    volumeMounts:
    - mountPath: /test-pd #inside the container
      name: test-volume
  volumes:
  - name: test-volume
    hostPath.
      # directory location on host
      path: /data #on the host machine
      # this field is optional
      type: Directory
```

Volumes

- Can be shared across pods.
- Can set capacity.
- Other specifications (access modes R,W ...)


Pods have 3 types

- Load balance
 - Does load balancing.
- Node port
 - Exposes the application on a port across each of your nodes
- Cluster

- Every pod has its own unique IP
- Containers in a pod share namespaces
 - Does this mean that they have the same view of the network?

Kubernetes networking

Google Cloud Platform

Role based access control

There are users, and service accounts.

- RBAC allows us to limit what resources are available and what they can do to those resources.
- Normal users assumed to be managed by outside independent service.
- Service account, managed by Kubernetes.

Verb: get, list, create, delete...

Resources: pod, volume, secret, service, endpoint...

Two types of roles.

- ► Namespace
 - Can do RBAC limiting namespace
- Cluster
 - Can do RBAC limiting clusters
- RBAC Kubernetes manual

Implement RBAC in two steps

- 1. Create a role with a list of rules.
- 2. Bind the created role to a user or service account.