
Operating Systems Basics

Tony Espinoza

am.espinoza@utexas.edu

Operating System

I System software that manages computer hardware, software
resources, and provides common services for computer
programs.
I I/O
I Memory allocation. . .

Operating Systems

I How do we interact with it (on the programming level)?
I System calls.

I What is a system call?
I The way for an application to interact with the hardware.
I The way for an application to interact with privileged

applications/data structures.

Operating System

Network system calls

I socket (domain, type, protocol)
I accept (socket, address, address length)
I bind (socket, address, address length)
I listen (socket, backlog)

File I/O system calls

I read (file descriptor, buffer, size)
I Used to read a file.

I write (file descriptor, buffer, size)
I Used to write a file.

I open (path name, flags)
I Returns the file descriptor of the file pointed to by path name..

I close (file descriptor)
I Closes a file descriptor.

CPU/Process system calls

I execve (pathname, argv, envp))
I Executes program referenced by pathname, args are arguments,

envp are the environment variables.
I fork ()

I No arguments, creates a new process. Return value is 0 in the
child and the process identification number of the child in the
parent.

I clone ()
I Variable arguments, creates a new process and can share parts

of its context with the parent process.

Memory system calls

I brk (address)
I Sets the end of the data segment to the value specified by

address.
I sbrk (increment)

I Increments the program’s data space by increment bytes.
I mmap (addr, length, prot, flags, fd, offset)

I Map files or devices into memory.

Low level (x86)

I read (file descriptor, buffer, size)
I rax = 0 , rdi=file descriptor, rsi=buffer, rdx=size.
I int 80, syscall
I Linux syscall table.

strace

I Traces system calls and signals.
I strace

I ls
I echo this
I etc.

I strace arguments
I -e trace=network
I -e trace=memory
I -c

System calls

I How would I look up what a system call does?
I check the manual for it.
I ex man 2 sbrk.
I man 2 if for Linux system calls.

I Side Note:
I manual (man) pages for Linux are similar to RFCs for the

Internet.
I man man

Who uses the OS?

I Users
I Users can own files

I Permission can be set to files.
I Users can be part of groups.
I Groups have permissions to read and write files.

UID

I Users all have a unique number.
I Their unique identification number (UID)
I The UID is associated with all of a users processes.
I See your UID by typing id -u.
I See all UIDs, cat /etc/passwd.

/etc/passwd

How to read /etc/passwd file.

I Username
I Password. An x character indicates that encrypted password is

stored in /etc/shadow file.
I User ID (UID).
I Group ID (GID).
I User ID Info.
I Home directory.
I Command/shell.

/etc/shadow

I A file containing all hashed passwords for the system.
I Passwords are typically salted before being hashed.

I Salting is used to make unique hashes and avoid precomputed
attacks.

I Typically the salted value is concatenated to the password
before hashing.

I Look at precomputed attacks.

MD5

I A hashing algorithm.
I Is hard to figure out what the original source text was, but we

can pre compute values.
I Hashtable where key = hash, value = plaintext.
I lookup(9dbb300e28bc21c8dab41b01883918eb) =

“passwordpassword”
I From the command line type:

I echo -n "passwordpassword" | md5sum
I Can test hash at https://md5.gromweb.com/.

https://md5.gromweb.com/

EUIDs

I A file can have an effective user ID (EUID)
I The EUIDs allow for an unprivileged process to run with the

privileges of the file.
I Useful for files like /etc/passwd
I ls -alhs /bin/passwd

Users and groups

I ls -alhs
I Change permission with chmod
I Add a user to a group usermod -aG additional_groups

username
I To view all groups cat /etc/group
I change ownership on a file?

I chown

Processes

I What is a process?
I An instance of a specific running program.

I How do you refer to a specific process?
I process ID or PID.

I How to look up a PID?
I Use ps.
I ex. ps aux | grep firefox.

Uses of the PID

I Kill a misbehaving program, kill -9 PID.
I Attach to a program with a debugger.
I Investigate the program with strace -p PID.

Block devices

I Devices that are read in chunks or blocks.
I Hard drive
I Flash drive
I DVD
I Card reader

Block devices

I How to display them?
I lsblk list block devices.

I How to read them?
I Mount them to the file system.
I mount /dev/sdb1 /mnt
I umount /mnt

Block devices

I Let’s mount an ISO image to /mnt
I ISO image is a disk image of an optical disk

Recap

I OS controls system resources including hardware.
I Systems calls are the mechanisms which user space applications

use to interact with the OS.
I PID is a unique process ID.
I UID is a unique user ID.
I Block devices can be mounted and read.

File structure

I / - called slash, the root directory.
I /boot - static files for the boot loader.
I /home - user directories.
I /etc - configuration files
I /dev - device files, HD, disk, etc.
I /proc - not actually on the disk.

/proc

I The proc filesystem is a pseudo-filesystem which provides an
interface to kernel data structures.

I In your VM navigate to /proc
I What do you see?
I man 5 proc

/proc

I cd /proc/sys/net/ipv4
I Here you will see

I tcp_syncookies
I tcp_max_syn_backlog

I Can manipulate files here directly
I sudo tee tcp_syncookies <<< 0

Containers

I Containers are a way to provide isolation.
I chroot
I cgroups
I namespaces

chroot

I Chroot is a way to isolate a directory.
I Makes the chrooted directory the root directory.

I Can not access anything not contained in the directory.
I No ls,bash,vim . . .

I Copy and run makebox.sh from canvas.
I sudo chroot $HOME/box /bin/bash

Namespaces

I man 7 namespaces
I Namespaces provide a way to isolate.

I Enables a process to have a different view of the system than
other processes.

I There are 7 namespaces.

Namespaces

I Cgroup
I Cgroup root directory

I IPC
I System V, POSIX interprocess communication.

I Network
I Network devices, stacks, ports. . .

I Mount
I Mount points.

I PID
I Process IDs.

I User
I User and group IDs.

I UTS
I Hostname and NIS domain name.

Namespace API

The following system calls are used to interact with namespaces:

I clone
I Create a new process and if flags are passed create namespaces

for the new process.
I setns

I Join a namespace.
I unshare

I Moves the calling process into a new namespace
I ioctl

I Discover information about namespaces

unshare

I Let’s use the unshare command to create a new hostname
namespace

I Open 2 terminals
I In 1 type uname -n
I In the other

I sudo unshare -u /bin/bash
I hostname bob
I uname -n

PID

I Processes are one big tree each with a parent process, and
possibly children.

I What happens if we isolate the PID?
I It will think it’s the parent process.
I It may not have any children.

I sudo unshare --fork --pid --mount-proc.
I Run top.

I In another termina run top.

mount

I Do namespace mount example.
I man user_namespaces

cgroups

I cgroups is short for Control Groups.
I Developed in 2006 by 2 google engineers
I In 2008 it was added to the Linux kernel 2.6.24
I Used by many container projects, Docker, LXC . . .

https://docs.oracle.com/cd/E37670_01/E37355/html/ol_cgroups.html

cgroups

I Resource limiting
I Groups can be set to not exceed a configured memory limit.

I Prioritization
I Some groups may get a larger share of CPU utilization or disk

I/O throughput.
I Accounting

I Measures a group’s resource usage.
I Control

I Freezing groups of processes, their checkpointing and restarting.

cgroups

I Let’s create cgroups
I Limit a program’s memory usage.
I Limit a program’s hard drive usage.

chroot, cgroups, namespaces

I Containers
I chroot restricts access to the filesystem.
I cgroups restricts access to the system resources.
I namespaces provide isolation.

Access control

I Access control determines how subjects have control over
objects.
I Subjects are users.
I Objects are files/programs.

I Can think of as a matrix that describes how subjects and
objects are related

Access control

I Addresses two important topics.
I Confidentiality

I Consealment of resources/information.
I i.e. don’t leak secrets.

I Integrity
I Trustworthiness of resource.
I i.e. has the data been altered.

Access control

I Discretionary Access Control.
I Linux standard.

I Mandatory Access Control.
I SELinux.

I Role Based Access Control.
I Lab2 part 2.

Access control

I Subjects can be users, and objects can be files, processes. . .

File 1 File2

User1 0 1
User2 1 0

Access control

I A simple binary representation is limiting.
I Can get more granular.

File 1 File2

User1 rwx r
User2 x rwx

Discretionary access control.

I Base access rights on the identify of the subject and the
identify of the object.

I Subjects can determine how other subjects can
use(modify,view,execute) files they own at their discretion.

I Linux mode.

Mandatory Access Control (MAC)

I Access control is delegated by an administrator.
I Subjects do not have control over their row of the matrix.
I Owner of an object can not change access control of that

object.

Role Based Access Control (RBAC)

I Subjects have roles and those roles have permissions associated
with them.

I e.g.?
I Someone with the role of Student may have access to the

campus library.
I Someone with the role of Teacher, can assign grades on Canvas.

I The permission is bound to the role the user has not the user
itself.

SELinux

I Is a way to make Linux perform MAC.
I It is part of Linux as a Security Module (LSM).
I Has been in Android for years.

LSM

I Not integrated into the kernel.
I Provides hooks that happen before and after syscalls.
I Allows for security mechanisms to be implemented at the

hooks.

SELinux

I Has three modes
I Enforcing

I Denies access based on rules.
I Permissive

I Logs access based on the rules but does not deny.
I Disabled

I Self explanitory.

SELinux

Rules in SELinux can be though of as “Subject x is allowed to do
access on object”.

I Subjects
I Processes, and transitively users.

I Accesses
I Read, write, execute.

I Objects
I Resource on which an action applies.

SELinux

I Context
I Every process or resource has a context associated with it.
I A context contains the: user, role, type, and security level.
I Type is the most important.
I Types end in _t

I Type enforcement

Type enforcement

I Type enforcement is implemented based on the labels of the
subjects and objects.

I Processes with the label user_t can execute regular files
labeled bin_t.

Type enforcement

Policy rule

I allow Source Target:Class Permission;

I Grant Permission to a process of type Source on objects of
type Target and class Class.

I allow unconfined_t mytype_t:file read ;

I Allow processes in with type unconfined_t read permission on
files of type mytype_t

