Encryption Basics

ECE @ UT

Symmetric Encryption: Shift cipher

- Shift-by-K
- Caesar supposedly used shift-by-3
- (current-symbol + K) mod alphabet-size
- Stream cipher with key k,k,k,k,k,...
- Easy to break: N guesses for K
- Also, statistics preserving encryption. Word length, letter frequencies.
- External knowledge of letter frequencies
- Chosen plaintext attack

Substitution Cipher

- Key is a permutation of the entire alphabet
- More keys than shift cipher
- With 26 letters, 26! Keys. (2^{88})
- Sherlock Holmes, Adventure of the Dancing Men
- Statistical attacks
- Letter frequencies. Combine with bi-, tri-grams.
- Plain text letter always maps to same cipher-text letter: Mono-alphabetic cipher.

Poly-alphabetic Substitution Cipher

- Use multiple substitution keys
- Example: key for odd and even letters.

Plaintext alphabet
Ciphertext alphabet one
Ciphertext alphabet two

ABCDEFGHIJKLMNOPQRSTUVWXYZ
TMKGOYDSIPELUAVCRJWXZNHBQF
DCBAHGFEMLKJIZYXWVUUTSRQPON

- Key search space for attacker: (26!) ${ }^{2}$
- Key size: 26×2. How to remember? Share?
- Vigenere Cipher: each sub-key restricted to a shift operation. Key size: 2 digits.
- Stream cipher with key stream k1.k2.k1.k2...
- Length of keyword known \rightarrow easy to break

Permutation Ciphers

- Permute the letters in a block
- Break text into block, pad its length, apply permutation
- Weaknesses: statistics attacks and chosen plain-text attacks.
- Length of block

Definitions

(Perfect Secrecy). A cryptosystem has perfect secrecy if

$$
p(P=m \mid C=c)=p(P=m)
$$

for all plaintexts m and all ciphertexts c.

$$
\left(\mathbb{P}, \mathbb{C}, \mathbb{K}, e_{k}(\cdot), d_{k}(\cdot)\right)
$$

denote a cryptosystem with $\# \mathbb{P}=\# \mathbb{C}=\# \mathbb{K}$. Then the cryptosystem provides perfect secrecy if and only if

- every key is used with equal probability $1 / \# \mathbb{K}$,
- for each $m \in \mathbb{P}$ and $c \in \mathbb{C}$ there is a unique key k such that $e_{k}(m)=c$.

Perfectly Secure Cipher

- One-time Pad. [pc: Shmatikov]

- Easy to compute.

One Time Pad: Weaknesses

- ?
- Key sequence has to perfectly random
- How?
- Does not guarantee integrity
- Change plaintext to desired value.
- Keys should not be reused.

Learn relationship between plaintexts

```
C1\oplusC2 = (P1\oplusK)\oplus(P2\oplusK) =
(P1\oplusP2)\oplus(K\oplusK) = P1\oplusP2
```


Block Ciphers

- Reduce key size. But also lose 'perfect' secrecy.

- 64b DES, 128b AES
- For long messages, modes of operation
- ECB, CBC, Counter, ...

Feistel Ciphers and DES

- Params: \#rounds, Round key gen, Function F.
- DES: 16 rounds, 64b block, 56b key, 48b round key

Iterate r
times

Ciphertext block \square

- Same code/circuit can be used for enc-dec, by reversing the order of Round-keys

DES

- Initial Permutation
- Split into L and R
- 16 rounds
- Join half blocks
- Final Permutation
- Function F:
- Expansion,
- Round key addition
- Split + Sub. Box

Iterate 16 times

Ciphertext block

- Permute Box

Rijndael/AES

AES Steps: Substitution

- each byte in the state matrix is replaced with a SubByte using an 8bit substitution box
- $b_{i j}=S\left(a_{i j}\right)$

| $a_{0,0}$ | $a_{0,1}$ | $a_{0,2}$ | $a_{0,3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a_{1,0}$ | $a_{1,1}$ | $a_{1,2}$ | $a_{1,3}$ |
| $a_{2,0}$ | $a_{2,}$ | $a_{2,2}$ | $a_{2,3}$ |
| $a_{3,0}$ | $a_{3,1}$ | $a_{3,2}$ | $a_{3,3}$ |

AES Steps: Shift Rows

- Cyclically shifts the bytes in each row by a certain offset
- The number of places each byte is shifted differs for each row

AES Steps: Mix Columns

Each column is multiplied by the known matrix. For the 128 -bit key it is

$$
\left[\begin{array}{llll}
2 & 3 & 1 & 1 \\
1 & 2 & 3 & 1 \\
1 & 1 & 2 & 3 \\
3 & 1 & 1 & 2
\end{array}\right]
$$

AES Steps: Add Round Key

Each byte of the state is combined with a byte of the round subkey using the XOR operation

AES Security

- Brute Force Attack

Key size	Time to Crack
56 -bit	399 seconds
128 -bit	1.02×10^{18} years
192 -bit	1.872×10^{37} years
256 -bit	3.31×10^{56} years

- More common: side-channel attacks
- Cache, power, EM, thermal, remanence ...
- S-box accesses, value of key bits, ...

Fundamentals behind AES

- Prime field/ Galois field
- Additive group w/ neutral element 0
- Multiplicative group with neutral element 1
- Distributive law $a(b+c)=a b+a c$
$-\mathrm{n}=1$ in theorem below
- Effectively: arithmetic modulo p

Theorem 4.3.1 A field with order m only exists if m is a prime power, i.e., $m=p^{n}$, for some positive integer n and prime integer $p . p$ is called the characteristic of the finite field.

Polynomial Arithmetic

- $m=8$ implies 'extension fields'
- Each Byte is a polynomial with GF(2) coeff.
- Addition/Subtraction = XOR
- Multiplication: $\mathrm{C}(\mathrm{x})=\mathrm{A}(\mathrm{x}) . \mathrm{B}(\mathrm{x}) \bmod \mathrm{P}(\mathrm{x})$.
- Mix Columns.
- $P(x)$: irreducible polynomial. "prime"
$-x^{8}+x^{4}+x^{3}+x+1$. $x^{4}+x+1$. Not $x^{4}+x^{3}+x+1$.
- $\mathbf{G F}\left(\mathbf{2}^{8}\right)$ Inversion: $\mathrm{A}^{-1}(x) . A(x)=1 \bmod P(x)$
- Substitution Box (precomputed lookup tables)
- only non-linear element in AES. S(a) + S(b) != $S(a+b)$

AES Layers

- 4x4 Bytes state. 16B plaintext and round-keys
- Substitution layer S-box
- one-one mapping (reqd for decryption)
$-\mathrm{A} \rightarrow \mathrm{GF}\left(2^{8}\right)$ Inverse \rightarrow Affine mapping $\rightarrow \mathrm{S}(\mathrm{A})$
- Diffusion layer: Shift Rows \| Mix Columns
- After 3 rounds, 16B plaintext \rightarrow every byte of state
- Key Addition layer: xor with round key

g()$:$ * one-byte left circular rotation of word
* S-box
* xor with round-constant RC[i].

```
RC[1] = 0x01
RC[j] = 0x02 }\timesRC[j-1
```


Encrypting a Large Message

- So, we' ve got a good block cipher, but our plaintext is larger than 128-bit block size
- Electronic Code Book (ECB) mode
- Split plaintext into blocks, encrypt each one separately using the block cipher
- Cipher Block Chaining (CBC) mode
- Split plaintext into blocks, XOR each block with the result of encrypting previous blocks
- Also various counter modes, feedback modes, etc.

ECB Mode

- Identical blocks of plaintext produce identical blocks of ciphertext
- No integrity checks: can mix and match blocks

Information Leakage in ECB Mode

[Wikipedia]

Encrypt in ECB mode

Adobe Passwords Stolen (2013)

- 153 million account passwords
- 56 million of them unique
- Encrypted using 3DES in ECB mode rather than hashed

CBC Mode: Encryption

- Identical blocks of plaintext encrypted differently
- Last cipherblock depends on entire plaintext
- Does not guarantee integrity

CBC Mode: Decryption

ECB vs. CBC

[Picture due to Bart Preneel]

Choosing the Initialization Vector

- Key used only once
- No IV needed (can use IV=0)
- Key used multiple times
- Best: fresh, random IV for every message
- Can also use unique IV (eg, counter), but then the first step in CBC mode must be IV' $\leftarrow \mathrm{E}$ (k, IV)
- Example: Windows BitLocker
- May not need to transmit IV with the ciphertext
- Multi-use key, unique messages
- Synthetic IV: IV $\leftarrow F\left(k^{\prime}\right.$, message)
- F is a cryptographically secure keyed pseudorandom function

CBC and Electronic Voting

[Kohno, Stubblefield, Rubin, Wallach]

Found in the source code for Diebold voting machines:
DesCBCEncrypt ((des_c_block*) tmp, (des_c_block*)record.m_Data, totalSize, DESKEY, NULL, DES_ENCRYPT)

CTR (Counter Mode)

- Does not guarantee integrity
- Fragile if counter repeats

How Can a Cipher Be Attacked?

- Attackers knows ciphertext and encryption algorithm
- What else does the attacker know? Depends on the application in which the cipher is used!
- Known-plaintext attack (stronger)
- Knows some plaintext-ciphertext pairs

- Chosen-plaintext attack (even stronger)
- Can obtain ciphertext for any plaintext of his choice
- Chosen-ciphertext attack (very strong)
- Can decrypt any ciphertext except the target
- Sometimes very realistic

Known-Plaintext Attack

[From "The Art of Intrusion"]
Extracting password from an encrypted PKZIP file

- "... I opened the ZIP file and found a `logo.tif’ file, so I went to their main Web site and looked at all the files named `logo.tif.' I downloaded them and zipped them all up and found one that matched the same checksum as the one in the protected ZIP file"
- With known plaintext, PkCrack took 5 minutes to extract the key
- Biham-Kocher attack on PKZIP stream cipher

Chosen-Plaintext Attack

... repeat for any PIN value

Security of Encryption Algos

- Any deterministic, stateless symmetric encryption scheme is insecure
- Attacker can easily distinguish encryptions of different plaintexts from encryptions of identical plaintexts
- This includes ECB mode of common block ciphers!

Attacker A interacts with Enc(-,-,b)

Let X, Y be any two different plaintexts
$\mathrm{C}_{1} \leftarrow \operatorname{Enc}(\mathrm{X}, \mathrm{X}, \mathrm{b}) ; \quad \mathrm{C}_{2} \leftarrow \operatorname{Enc}(\mathrm{X}, \mathrm{Y}, \mathrm{b}) ;$
If $C_{1}=C_{2}$ then $b=0$ else $b=1$

- The advantage of this attacker A is 1
$\operatorname{Prob}(A$ outputs 1 if $b=0)=0 \quad \operatorname{Prob}(A$ outputs 1 if $b=1)=1$

Key Distribution: Needham Schroeder

- Alice,Bob, trusted Server S, Nonce: random number used once.

$$
\begin{aligned}
& A \longrightarrow S: A, B, N_{a}, \\
& S \longrightarrow A:\left\{N_{a}, B, K_{a b},\left\{K_{a b}, A\right\}_{K_{b s}}\right\}_{K_{a s}}, \\
& A \longrightarrow B:\left\{K_{a b}, A\right\}_{K_{b s}}, \\
& B \longrightarrow A:\left\{N_{b}\right\}_{K_{a b}}, \\
& A \longrightarrow B:\left\{N_{b}-1\right\}_{K_{a b}} .
\end{aligned}
$$

- If adversary knows old session key, can replay session.

Key Distribution

- Authentication of one entity to another, and issue session keys
- Separate auth from access control decisions
- Add timestamps.

$$
\begin{aligned}
& A \longrightarrow S: A, B, \\
& S \longrightarrow A:\left\{T_{S}, L, K_{a b}, B,\left\{T_{S}, L, K_{a b}, A\right\}_{K_{b s}}\right\}_{K_{a s}}, \\
& A \longrightarrow B:\left\{T_{S}, L, K_{a b}, A\right\}_{K_{b s}},\left\{A, T_{A}\right\}_{K_{a b}}, \\
& B \longrightarrow A:\left\{T_{A}+1\right\}_{K_{a b}} .
\end{aligned}
$$

- Protocol verification: CSP, BAN logic etc.

Hash Functions

- Arbitrary length input \rightarrow fixed length output
- Integrity, Digital signature
- Keyed hash: message authentication code (MAC)
- Requirements
- Preimage resistant: hard to find message with a given hash value
- Collision resistant: hard to find two messages with the same hash value
- Second preimage resistant: Given one message, hard to find another with the same hash value.

Merkle-Damgard Construction

- Iterate over blocks (similar to CBC mode).
$l=s-n$
Pad the input message m with zeros so that it is a multiple of l bits in length Divide the input m into t blocks of l bits long, m_{1}, \ldots, m_{t}
Set H to be some fixed bit string of length n.
for $i=1$ to t do
$H=f\left(H \| m_{i}\right)$
end
return (H)
- Length strengthening: Pad zero bits to create N blocks, then a final block of L bits to encode the original length of unpadded message

SHA-1

- Not recommended anymore.

Google Security Blog Announcing the first SHA1 collision
http://shattered.io/
February 23, 2017

SHA-1 $1_{\text {strmation }}$

SHA-1

Each Step of SHA-1 (of 80 steps)

SHA-1

- Not recommended anymore.
$(A, B, C, D, E)=\left(H_{1}, H_{2}, H_{3}, H_{4}, H_{5}\right)$
/* Expansion */
for $j=16$ to 79 do $X_{j}=\left(\left(X_{j-3} \oplus X_{j-8} \oplus X_{j-14} \oplus X_{j-16}\right) \lll 1\right)$
end
Execute Round 1
Execute Round 2
Execute Round 3
Execute Round 4
$\left(H_{1}, H_{2}, H_{3}, H_{4}, H_{5}\right)=\left(H_{1}+A, H_{2}+B, H_{3}+C, H_{4}+D, H_{5}+E\right)$

SHA-1 Round functions

```
Round 1
for \(j=0\) to 19 do
    \(t=(A \lll 5)+f(B, C, D)+E+X_{j}+y_{1}\)
    \((A, B, C, D, E)=(t, A, B \lll 30, C, D)\)
end
Round 2
for \(j=20\) to 39 do
    \(t=(A \lll 5)+h(B, C, D)+E+X_{j}+y_{2}\)
    \((A, B, C, D, E)=(t, A, B \lll 30, C, D)\)
end
Round 3
for \(j=40\) to 59 do
        \(t=(A \lll 5)+g(B, C, D)+E+X_{j}+y_{3}\)
        \((A, B, C, D, E)=(t, A, B \lll 30, C, D)\)
    end
    Round 4
    for \(j=60\) to 79 do
        \(t=(A \lll 5)+h(B, C, D)+E+X_{j}+y_{4}\)
        \((A, B, C, D, E)=(t, A, B \lll 30, C, D)\)
end
```


Hash Function Family

- Differ in rounds and constants, but similar structure.
- MD4: This has 3 rounds of 16 steps and an output bitlength of 128 bits.
- MD5: This has 4 rounds of 16 steps and an output bitlength of 128 bits.
- SHA-1: This has 4 rounds of 20 steps and an output bitlength of 160 bits.
- RIPEMD-160: This has 5 rounds of 16 steps and an output bitlength of 160 bits.
- SHA-256: This has 64 rounds of single steps and an output bitlength of 256 bits.
- SHA-384: This is identical to SHA-512 except the output is truncated to 384 bits.
- SHA-512: This has 80 rounds of single steps and an output bitlength of 512 bits.

MACs with Authentication

Integrity and authentication: only someone who knows KEY can compute correct MAC for a given message

Keyed-MAC (HMAC)

Encrypt + MAC

Goal: confidentiality + integrity + authentication

MAC is deterministic: messages are equal \Rightarrow their MACs are equal
Solution: Encrypt, then MAC (or MAC, then encrypt)

Asymmetric Crypto

- Encryption for confidentiality
- Private:public key pair
- Digital signatures for authentication and integrity - Alice signs using private key, Bob verifies using public key
- Key management and Certificate Authorities
- Session keys: e.g. Diffie-Hellman key exchange.

Diffie Hellman (Merkle)

Diffie-Hellman Set-up

1. Choose a large prime p.
2. Choose an integer $\alpha \in\{2,3, \ldots, p-2\}$.
3. Publish p and α.

Diffie-Hellman Key Exchange

```
Alice
choose \(a=k_{p r, A} \in\{2, \ldots, p-2\}\)
compute \(A=k_{p u b, A} \equiv \alpha^{a} \bmod p\)
```


RSA: Rivest Shamir Adleman

- 1977. Independently created in '73
- Key generation
- Two primes p, q
$-\mathrm{n}=\mathrm{p} . \mathrm{q}, \varphi(n)=\varphi(p) \varphi(q)=(p-1)(q-1)$
-e , coprime with d, s.t. $d \cdot e \equiv 1(\bmod \varphi(n))$
- Public key (n, e). Private key (n, d)
- Encryption of $\mathbf{m}: \mathbf{c}=\mathbf{m}^{\mathbf{e}} \bmod \mathbf{n}$
- Decryption of $c: c^{d} \bmod n=\left(m^{e}\right)^{d} \bmod n=m$

RSA Decryption ${ }_{\text {stmmation }}$

$\mathrm{e} \cdot \mathrm{d} \equiv 1 \bmod \varphi(\mathrm{n})$
Thus e.d $=1+k \cdot \varphi(n)=1+k(p-1)(q-1)$ for some k If $\operatorname{gcd}(m, p)=1$, then by Fermat's Little Theorem, $\mathrm{m}^{\mathrm{p}-1} \equiv 1 \bmod \mathrm{p}$
Raise both sides to the power $\mathrm{k}(\mathrm{q}-1)$ and multiply by m , obtaining $\mathrm{m}^{1+\mathrm{k}(\mathrm{p}-1)(q-1)} \equiv \mathrm{m} \bmod \mathrm{p}$
Thus $\mathrm{m}^{\text {ed }} \equiv \mathrm{m} \bmod \mathrm{p}$
By the same argument, $\mathrm{m}^{\text {ed }} \equiv \mathrm{m} \bmod \mathrm{q}$
Since p and q are distinct primes and $p \cdot q=n$,
$\mathrm{m}^{\text {ed }} \equiv \mathrm{m} \bmod \mathrm{n}$ (chinese remainder theorem)

RSA and Factoring

- Given n , factor into $\mathrm{p} \& \mathrm{q}$, and hence $\varphi(n)$
- Hence, with e and $d \cdot e \equiv 1(\bmod \varphi(n))$, get d.
- Solution to factoring breaks RSA
- But RSA problem is to recover m from c
- Taking e ${ }^{\text {th }}$ root of c modulo n
- Might break without factoring as well. Unknown.

‘Textbook' RSA is Bad

Deterministic

- Attacker can guess plaintext, compute ciphertext, and compare for equality
- If messages are from a small set (for example, yes/no), can build a table of corresponding ciphertexts
Can tamper with encrypted messages
- Take an encrypted auction bid c and submit $c(101 / 100)^{e}$ mod n instead
Does not provide semantic security (security against chosen-plaintext attacks)

RSA + Integrity

""Textbook" RSA does not provide integrity

- Given encryptions of m_{1} and m_{2}, attacker can create encryption of $m_{1} \cdot m_{2}$
- $\left(m_{1}{ }^{e}\right) \cdot\left(m_{2}{ }^{e}\right) \bmod n \equiv\left(m_{1} \cdot m_{2}\right)^{e} \bmod n$
- Attacker can convert m into m^{k} without decrypting $-\left(m^{\mathrm{e}}\right)^{\mathrm{k}} \bmod \mathrm{n} \equiv\left(\mathrm{m}^{\mathrm{k}}\right)^{\mathrm{e}} \bmod \mathrm{n}$
-In practice, OAEP is used: instead of encrypting M, encrypt $M \oplus G(r)$; $r \oplus H(M \oplus G(r))$
- r is random and fresh, G and H are hash functions
- Resulting encryption is plaintext-aware: infeasible to compute a valid encryption without knowing plaintext
- ... if hash functions are "qood" and RSA problem is hard

Other Trapdoor One-way Fns

- Elliptic-curves: gen. of discrete log problem
- Shorter keys, faster than RSA-1024+
- Points on an elliptic curve (+ extra pt at infinity) form cyclic sub-groups
- To generate a curve with about 2^{160} points, a prime with a length of about 160 bits is required

[^0]
Summary

- Key exchange
- Protocols, certificate authority
- Asymmetric
- Used for key exchange, can encrypt or sign
- Symmetric
- Session encryption, can use to sign as well (not rec.)
- Signatures/MACs/Digest (keyed/otherwise)
- Fast vs. Slow

Next: Memory Errors

- Input maliciously crafted values to target \rightarrow take control over target's execution
- Many sub-categories:
- Code injection
- Control-flow
- Data-flow
- Baseline defenses
- Data execution prevention
- Address-space randomization
- Control-flow integrity
- Memory safety

[^0]: - Cryptosystems are based on the idea that d is large and kept secret and attackers cannot compute it easily

